Publicación:
The Proximal Ejecta Around the Marine-Target Lockne Impact Structure, Sweden

dc.contributor.authorSturkell, Erik
dc.contributor.authorOrmö, Jens
dc.contributor.authorAustin Hegardt, Eric
dc.contributor.authorStockmann, Gabrielle
dc.contributor.authorMeland, Erik
dc.contributor.authorWikström, Torbjörn
dc.date.accessioned2025-12-02T10:47:47Z
dc.date.available2025-12-02T10:47:47Z
dc.date.issued2023-07
dc.description.abstractVery few impact craters on Earth have preserved proximal ejecta (ejecta blanket), which when present help us to better understand the cratering processes when asteroid hits Earth. The 458 Ma old Lockne impact structure consists of a 7.5-km wide nested crater in the crystalline basement surrounded by an approximately 3-km wide brim developed in the upper sedimentary target. The asteroid struck a marine environment with 500 m sea water, 50-m lithified limestone, and 30 m of Cambrian clay covering a peneplainized crystalline basement. The transient crater that developed in rock and water obtained a “soup-plate” shape and reached about 7 km from the impact crater center, the farthest on the down-range side. The brim of the soup-plate was partially stripped of Ordovician limestone and water before the emplacement of inner impact crater ejecta. Most of the ejecta rest upon the Cambrian clay (today shale). The asteroid struck obliquely from the east, which is reflected in the ejecta distribution. The proximal ejecta field is divided into two crescent-shaped areas to the northwest and southwest of the nested crater and covers 26 km2. Resistivity profiles, mapping, and core drilling show that the thickness of the ejecta masses range between 30 and 50 m with a total volume of about 1 km3. They were not re-worked by the resurge. They represent roughly 26 vol% of the calculated excavated volume of crystalline rocks. Thus, it can be concluded that the Lockne impact crater has a well-preserved ejecta blanket.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipÅsa Frisk and Pierre Etienne Martin, who helped with the field measurements are greatly acknowledged. We thank Ann Bäckström for the resistivity data she made available for this study. Harald Olsson, who passed away in February 2021, lived on the edge of the impact structure in Ångsta at the farmed named Nordanberg. He took great interest in promoting the Lockne impact structure and helped researchers coming to the area. Furthermore, he took the initiative to build up the Lockne impact museum in Ångsta. The work by Jens Ormö and Erik Sturkell was supported by Grant PID2021-125883NB-C22 by the Spanish Ministry of Science and Innovation/State Agency of Research MCIN/AEI/https://doi.org/10.13039/501100011033 and by “ERDF A way of making Europe,” as well as the Spanish Research Council (CSIC) support for international cooperation I-LINK project ILINK22061. The authors are grateful for the valuable comments by Christian Koeberl and an anonymous reviewer.
dc.identifier.citationPlanets 128(7): e2023JE007777(2023)
dc.identifier.doi10.1029/2023JE007777
dc.identifier.e-issn2169-9100
dc.identifier.issn2169-9097
dc.identifier.otherhttps://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE007777
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1561
dc.language.isoeng
dc.publisherAmerican Geophysical Union
dc.relationIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
dc.relation.isreferencedby- Bäckström, A. (2005). A study of impact fracturing and electric resistivity related to Lockne impact structure, Sweden, the Mora meeting proceedings. In C. Koeberl & H. Henkel (Eds.), Impact tectonics (pp. 389–404). Springer-Verlag. - Dalwigk, I. V., & Ormö, J. (2001). Formation of resurge gullies at impacts at sea: The Lockne crater, Sweden. Meteoritics & Planetary Sciences, 36(3), 359–370. https://doi.org/10.1111/j.1945-5100.2001.tb01879.x - Frisk, Å. M., & Ormö, J. (2007). Facies distribution of post- impact sediments in the Ordovician Lockne and Tvären impact craters: Indications for unique impact generated environments. Meteoritics & Planetary Sciences, 42(11), 1971–1984. https://doi.org/10.1111/j.1945-5100.2007.tb00554.x - Glass, B. P., & Simonson, B. M. (2012). Distal impact ejecta layers: A record of large impacts in sedimentary deposits (p. 716) Springer Science & Business Media. https://doi.org/10.1007/978-3-540-88262-6 - Heuwinkel, J., & Lindström, M. (2007). Sedimentary and tectonic environment of the Ordovician Föllinge Greywacke, Storsjön area, Swedish Caledonides. GFF, 129(1), 31–42. https://doi.org/10.1080/11035890701291031 - Högdahl, K. (2000). 1.86–1.85 Ga intrusive ages of K-feldspar megacryst-bearing granites in the type area of Revsund granites in Jämtland County, central Sweden. GFF, 122(4), 359–366. https://doi.org/10.1080/11035890001224359 - Jaanusson, V. (1976). Faunal dynamics in the middle Ordovician (Viruan) of Balto-Scandia. In M. G. Bassett (Ed.), The ordovician system: Proceedings of a palaeontological association symposium (pp. 301–326). University of Wales Press. - Jaanusson, V. (1982). Introduction to the Ordovician of Sweden. In D. H. Bruton & S. H. Williams (Eds.), IV. International symposium on the Ordovician system. Field excursion guide, palaeontological contributions from the University of oslo (Vol. 279, pp. 1–9). - Jones, G. H. S. (1978). Coherently overturned flaps surround craters. Nature, 273(5659), 211–213. https://doi.org/10.1038/273211b0 - Katongo, C., Koeberl, C., Witzke, B. J., Hammond, R. H., & Anderson, R. R. (2004). Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure. Meteoritics & Planetary Sciences, 39(1), 31–51. https://doi.org/10.1111/j.1945-5100.2004.tb00048.x - Lindgren, P., Parnell, J., Norman, C., Mark, D. F., Baron, M., Ormö, J., et al. (2007). Formation of Uranium/thorium-rich bitumen nodules in the Lockne impact crater, Sweden: A mechanism for carbon concentration at impact sites. Meteoritics & Planetary Sciences, 42(11), 1961–1989. https://doi.org/10.1111/j.1945-5100.2007.tb00553.x - Lindström, M., Ormö, J., & Sturkell, E. (2008). Water-blow and resurge breccias at the Lockne marine-target impact structure. In I. K. Evans, J. W. Horton, D. T. King, & J. R. Morrow (Eds.), GSA special paper (Vol. 437, pp. 43–54). https://doi.org/10.1130/2008.2437(03) - Lindström, M., Ormö, J., Sturkell, E., & Dalwigk, I. V. (2005). The Lockne crater: Revision and reassessment of structure and impact stratigraphy. In C. Koeberl & H. Henkel (Eds.), Impact tectonics (pp. 357–388). Springer-Verlag. - Lindström, M., Shuvalov, V., & Ivanov, B. (2005). Lockne crater as a result of marine-target oblique impact. Planetary and Space Science, 53(8), 803–815. https://doi.org/10.1016/j.pss.2005.02.005 - Lindström, M., Simon, S., Paul, B., & Kessler, K. (1983). The Ordovician and its mass movements in the Lockne Area near the Caledonian margin, central Sweden. Geologica et Palaeontologica, 17, 17–27. - Lindström, M., & Sturkell, E. F. F. (1992). Geology of the early Palaeozoic Lockne impact, central Sweden. Tectonophysics, 216(1–2), 169–185. https://doi.org/10.1016/0040-1951(92)90164-2 - Lindström, M., Sturkell, E. F. F., Törnberg, R., & Ormö, J. (1996). The marine impact crater at Lockne, central Sweden. GFF, 118(4), 193–206. https://doi.org/10.1080/11035899609546255 - McGetchin, T. R., Settle, M., & Head, J. W. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters, 20(2), 226–236. https://doi.org/10.1016/0012-821x(73)90162-3 - Melero-Asensio, I., Martin-Hernandez, F., & Ormö, J. (2014). A rock magnetic profile through the ejecta flap of the Lockne impact crater (central Sweden) and implications for the impact excavation process. Journal of Applied Geophysics, 112, 91–105. https://doi.org/10.1016/j.jappgeo.2014.11.009 - Melosh, J. (1989). Impact cratering—A geologic process. Oxford University Press. - Moore, H. J., Hodges, C. A., & Scott, D. H. (1974). Multiringed basins—Illustrated by Orientale and associated features. In Abstract at the 5th lunar science conference (pp. 71–100). - Ormö, J., Rossi, A. P., & Housen, K. R. (2013). A new method to determine the direction of impact: Asymmetry of concentric impact craters as observed in the field (Lockne), on Mars, in experiments, and simulations. Meteoritics & Planetary Sciences, 48(3), 403–419. https://doi.org/10.1111/maps.12065 - Ormö, J., Shuvalov, V., & Lindström, M. (2002). Numerical modeling for target water depth estimation of marine-target impact craters. Journal of Geophysical Research, 107(E12), 31–39. https://doi.org/10.1029/2002je001865 - Ormö, J., Sturkell, E., Alwmark, C., & Melosh, J. (2014). First known terrestrial impact of a binary asteroid from a main Belt Breakup event. Scientific Reports, 4(1), 6724. https://doi.org/10.1038/srep06724 - Ormö, J., Sturkell, E., & Lindström, M. (2007). Sedimentological analysis of resurge deposits at the Lockne and Tvären craters: Clues to flow dynamics. Meteoritics & Planetary Sciences, 42(11), 1929–1944. https://doi.org/10.1111/j.1945-5100.2007.tb00551.x - Ormö, J., Sturkell, E., Nõlvak, J., Melero-Asensio, I., Frisk, Å., & Wikström, T. (2014). The geology of the Målingen structure: A probable doublet to the Lockne marine-target impact crater, central Sweden. Meteoritics & Planetary Sciences, 49(3), 313–327. https://doi.org/10.1111/maps.12251 - Osinski, G. R., Tornabene, L. L., & Grieve, R. A. F. (2011). Impact ejecta emplacement on terrestrial planets. Earth and Planetary Science Letters, 310(3–4), 167–181. https://doi.org/10.1016/j.epsl.2011.08.012 - Quaide, W. L., & Oberbeck, V. R. (1968). Thickness determinations of the lunar surface layer from lunar impact craters. Journal of Geophysical Research, 73(16), 5247–5270. https://doi.org/10.1029/jb073i016p05247 - Schultz, P. H., & Gault, D. E. (1985). Clustered impacts: Experiments and implications. Journal of Geophysical Research, 90(B5), 3701–3732. https://doi.org/10.1029/jb090ib05p03701 - Shuvalov, V., Ormö, J., & Lindström, M. (2005). Hydrocode simulation of the Lockne marine target impact event. In C. Koeberl & H. Henkel (Eds.), Impact tectonics (pp. 405–422). Springer-Verlag. - Simon, S. (1987a). Caledonian deformation of basement in the Lockne area, Jämtland, central Sweden. Geologiska Foreningens I Stockholm Forhandlingar, 109(4), 269–273. https://doi.org/10.1080/11035898709453088 - Simon, S. (1987b). Stratigraphie, Petrographie und Entstehungsbedingungen von Grobklastika in der autochthonen, ordovizischen Schichtenfolge Jämtlands (Schweden). Sveriges geologiska undersökning C, 815, 1–156. - Sjöqvist, A. S. L., Lindgren, P., Sturkell, E. F. F., Hogmalm, K. J., Broman, C., Ivarsson, M., & Lee, M. R. (2017). Shock metamorphism and hydrothermal alteration of mafic impact ejecta from the Lockne impact structure, Sweden. GFF, 139(2), 119–128. https://doi.org/10.1080/11035897.2016.1227361 - Sturkell, E., & Lindström, M. (2004). The target peneplain of the Lockne impact. Meteoritics & Planetary Sciences, 39(10), 1721–1731. https://doi.org/10.1111/j.1945-5100.2004.tb00068.x Sturkell, E., Ormö, J., Hegardt, E. A., Stockmann, G., Meland, E., & Wikström, T. (2023). Data repository. https://doi.org/10.5878/mqt8-x135 Sturkell, E., Ormö, J., & Lepinette, A. (2013). Early modification stage (preresurge) sediment mobilization in the Lockne concentric, marine-target crater, Sweden. Meteoritics & Planetary Sciences, 48(3), 321–338. https://doi.org/10.1111/maps.12058 - Sturkell, E., Ormö, J., Nõlvak, J., & Wallin, Å. (2000). Distant ejecta from the Lockne marine-target impact crater, Sweden. Meteoritics & Planetary Sciences, 35(5), 929–936. https://doi.org/10.1111/j.1945-5100.2000.tb01482.x - Sturkell, E. F. F. (1998a). The marine Lockne impact structure, Jämtland, Sweden: A review. Geologische Rundschau, 87(3), 253–267. https://doi.org/10.1007/s005310050208 - Sturkell, E. F. F. (1998b). Resurge morphology of the marine Lockne impact crater, Jämtland, central Sweden. Geological Magazine, 135(1), 121–127. https://doi.org/10.1017/s0016756897007875 - Sturkell, E. F. F., Broman, C., Forsberg, P., & Torssander, T. (1998). Impact-related hydrothermal activity in the Lockne impact structure, Jämtland, Sweden. European Journal of Mineralogy, 10(3), 589–606. https://doi.org/10.1127/ejm/10/3/0589 - Sturkell, E. F. F., & Lindström, M. (1996). Mass balance of the Lockne impact structure, central Sweden. In Abstract at current problems, ideas, and results in geology stockholm, GFF 118, Jubilee issue (pp. A102–A103). - Sturkell, E. F. F., & Ormö, J. (1997). Impact-related clastic injections in the marine Ordovician Lockne impact structure, central Sweden. Sedimentology, 44(5), 793–804. https://doi.org/10.1046/j.1365-3091.1997.d01-54.x - Sturm, S., Kenkmann, T., Willmes, M., Pöosges, G., & Hiesinger, H. (2015). The distribution of 488 megablocks in the Ries crater, Germany: Remote sensing, field investigation, and 489 statistical analyses. Meteoritics & Planetary Sciences, 50(1), 141–171. https://doi.org/10.1111/maps.12408 - Thorslund, P. (1940). On the Chasmops series of Jemtland and Södermanland (Tvären). Sveriges Geologiska Undersökning C, 494, 1–191. - Törnberg, R., & Sturkell, E. F. F. (2005). Petrophysics of marine Lockne and Tvären impact structures. Meteoritics & Planetary Sciences, 40(4), 639–651. https://doi.org/10.1111/j.1945-5100.2005.tb00968.x - Witzke, R. J., & Anderson, R. R. (1996). Sedimentary-clast breccias of the Manson impact structure. In C. Koeberl & R. R. Anderson (Eds.), The Manson impact structure, Iowa: Anatomy of an impact crater, geological society of America special paper, Boulder, Colorado (Vol. 302, pp. 115–144).
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.license© 2023. The Authors.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectimpact
dc.subjectmarine
dc.subjectejecta
dc.subjectresistivity
dc.subjectLockne
dc.subjectSweden
dc.titleThe Proximal Ejecta Around the Marine-Target Lockne Impact Structure, Sweden
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
oaire.awardNumberPID2021-125883NB-C22
oaire.awardTitleIMPACTOS COSMICOS EN CUERPOS PLANETARIOS: EFECTOS DEL PROYECTIL Y OBJETIVO EN LA MORFOLOGIA DEL CRATER COMO INSTRUMENTOS PARA EVALUAR PALEO-AMBIENTES Y RIESGOS CATASTROFICOS
oaire.awardURIhttps://hdl.handle.net/20.500.12666/1560
relation.isAuthorOfPublication22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isAuthorOfPublication.latestForDiscovery22ae43e3-7c23-4b62-b894-3ad15fa05444
relation.isProjectOfPublication66f1b32f-e228-410e-bcf6-ede7db21aa06
relation.isProjectOfPublication.latestForDiscovery66f1b32f-e228-410e-bcf6-ede7db21aa06

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Sturkell et al_JGR Planets - 2023_Lockne ejecta layer.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones