Proyecto de Investigación: BES-2015-073500
Cargando...
Colaboradores
Financiadores
ID
BES-2015-073500
Autores
Publicaciones
Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel
(EDP Sciences, 2019-09-23) Sánchez López, A.; Alonso Floriano, F. J.; López Puertas, M.; Snellen, Ignas; Funke, B.; Nagel, E.; Bauer, F. F.; Amado, P. J.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.; Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Anglada Escudé, G.; Béjar, V. J. S.; Casasayas Barris, N.; Galadí Enríquez, D.; Guenther, E. W.; Henning, T.; Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.; Morales, J. C.; Stangret, M.; Tal Or, L.; Sanz Forcada, J.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Zechmeister, M.; Ministerio de Ciencia e Innovación (MICINN); Israel Science Foundation (ISF); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Sánchez López, A. [0000-0002-0516-7956]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Snellen, I. [0000-0003-1624-3667]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Aims. We aim at detecting water vapor in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES.
Methods. The water vapor absorption lines from the atmosphere of the planet are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s−1, whilst the Earth’s telluric and the stellar lines can be considered quasi-static. We took advantage of this shift to remove the telluric and stellar lines using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve the information from those lines by cross-correlating the residual spectra with models of the atmospheric absorption of the planet.
Results. We find a cross-correlation signal with a signal-to-noise ratio (S/N) of 6.4, revealing H2O in HD 209458 b. We obtain a net blueshift of the signal of –5.2 −1.3+2.6 km s−1 that, despite the large error bars, is a firm indication of day- to night-side winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2O individually from the three near infrared bands covered by CARMENES. We detect H2O from its 0.96–1.06 μm band with a S/N of 5.8, and also find hints of a detection from the 1.06–1.26 μm band, with a low S/N of 2.8. No clear planetary signal is found from the 1.26–1.62 μm band.
Conclusions. Our significant H2O signal at 0.96–1.06 μm in HD 209458 b represents the first detection of H2O from this band individually, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μm bands. H2O is detected from the 0.96–1.06 μm band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter, in line with previous studies. Future data gathered at more stable conditions and with larger S/N at both optical and near-infrared wavelengths could help to characterize the presence of aerosols in HD 209458 b and other planets.
Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES.
(EDP Sciences, 2020-10-27) Sánchez López, A.; López Puertas, M.; Snellen, Ignas; Nagel, E.; Bauer, F. F.; Pallé, E.; Tal Or, L.; Amado, P. J.; Caballero, P. J.; Czesla, S.; Nortmann, L.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Aceituno, J.; Béjar, V. J. S.; Casasayas Barris, N.; Henning, T.; Molaverdikhani, K.; Montes, D.; Stangret, M.; Zapatero Osorio, M. R.; Zechmeister, M.; European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Ministerio de Ciencia e Innovación (MICINN); Pallé, E. [0000-0003-0987-1593]; Sánchez López, A. [0000-0002-0516-7956]; Nagel, E. [0000-0002-4019-3631]; Montes, D. [0000-0002-7779-238X]; Molaverdikhani, K. [0000-0002-0502-0428]; López Puertas, M. [0000-0003-2941-7734]; Snellen, I. A. G. [0000-0003-1624-3667]; Centro de Excelencia Científica Severo Ochoa Instituto de Astrofísica de Andalucía CSIC, SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. Relatively large radii of some hot Jupiters observed in the ultraviolet and blue-optical are generally interpreted to be due to Rayleigh scattering by high-altitude haze particles. However, the haze composition and its production mechanisms are not fully understood, and observational information is still limited.
Aims. We aim to study the presence of hazes in the atmospheres of HD 209458 b and HD 189733 b with high spectral resolution spectra by analysing the strength of water vapour cross-correlation signals across the red optical and near-infrared wavelength ranges.
Methods. A total of seven transits of the two planets were observed with the CARMENES spectrograph at the 3.5 m Calar Alto telescope. Their Doppler-shifted signals were disentangled from the telluric and stellar contributions using the detrending algorithm SYSREM. The residual spectra were subsequently cross-correlated with water vapour templates at 0.70–0.96 μm to measure the strength of the water vapour absorption bands.
Results. The optical water vapour bands were detected at 5.2σ in HD 209458 b in one transit, whereas no evidence of them was found in four transits of HD 189733 b. Therefore, the relative strength of the optical water bands compared to those in the near-infrared were found to be larger in HD 209458 b than in HD 189733 b.
Conclusions. We interpret the non-detection of optical water bands in the transmission spectra of HD 189733 b, compared to the detection in HD 209458 b, to be due to the presence of high-altitude hazes in the former planet, which are largely absent in the latter. This is consistent with previous measurements with the Hubble Space Telescope. We show that currently available CARMENES observations of hot Jupiters can be used to investigate the presence of haze extinction in their atmospheres.
Modelling the He i triplet absorption at 10 830 A in the atmosphere of HD 209458 b
(EDP Sciences, 2020-04-07) Lampón, M.; López Puertas, M.; Lara, L. M.; Sánchez López, A.; Salz, M.; Czesla, S.; Sanz Forcada, J.; Molaverdikhani, K.; Alonso Floriano, F. J.; Nortmann, L.; Caballero, J. A.; Bauer, F. F.; Pallé, E.; Montes, D.; Quirrenbach, A.; Nagel, E.; Ribas, I.; Reiners, A.; Amado, P. J.; Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Junta de Andalucía; 0000-0002-0183-7158; 0000-0003-2941-7734; 0000-0002-7184-920X; 0000-0002-0516-7956; 0000-0002-0502-0428; 0000-0002-7349-1387; 0000-0003-1212-5225; 0000-0003-0987-1593; 0000-0002-7779-238X; 0000-0002-4019-3631; 0000-0002-6689-0312; 0000-0002-8388-6040; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
Context. HD 209458 b is an exoplanet with an upper atmosphere undergoing blow-off escape that has mainly been studied using measurements of the Lyα absorption. Recently, high-resolution measurements of absorption in the He I triplet line at 10 830 A of several exoplanets (including HD 209458 b) have been reported, creating a new opportunity to probe escaping atmospheres. Aims. We aim to better understand the atmospheric regions of HD 209458 b from where the escape originates. Methods. We developed a 1D hydrodynamic model with spherical symmetry for the HD 209458 b thermosphere coupled with a non-local thermodynamic model for the population of the He I triplet state. In addition, we performed high-resolution radiative transfer calculations of synthetic spectra for the helium triplet lines and compared them with the measured absorption spectrum in order to retrieve information about the atmospheric parameters. Results. We find that the measured spectrum constrains the [H]/[H+] transition altitude occurring in the range of 1.2 RP-1.9 RP. Hydrogen is almost fully ionised at altitudes above 2.9 RP. We also find that the X-ray and extreme ultraviolet absorption takes place at effective radii from 1.16 to 1.30 RP, and that the He I triplet peak density occurs at altitudes from 1.04 to 1.60 RP. Additionally, the averaged mean molecular weight is confined to the 0.61-0.73 g mole-1 interval, and the thermospheric H/He ratio should be larger than 90/10, and most likely approximately 98/2. We also provide a one-to-one relationship between mass-loss rate and temperature. Based on the energy-limited escape approach and assuming heating efficiencies of 0.1-0.2, we find a mass-loss rate in the range of (0.42-1.00) ×1011 g s-1 and a corresponding temperature range of 7125-8125 K. Conclusions. The analysis of the measured He I triplet absorption spectrum significantly constrains the thermospheric structure of HD 209458 b and advances our knowledge of its escaping atmosphere. © ESO 2020.










