Proyecto de Investigación: DINAMICA, NUBES Y AEROSOLES EN ATMOSFERAS PLANETARIAS
Cargando...
Colaboradores
Financiadores
ID
AYA2015-65041-P
Autores
Publicaciones
The dynamic atmospheric and aeolian environment of Jezero crater, Mars
(Science Publishin Group, 2022-05-25) Newman, C. E.; Hueso, R.; Lemmon, M. T.; Munguira, A.; Vicente Retortillo, Álvaro; Apéstigue, Víctor; Martínez, Germán M.; Toledo, D.; Sullivan, Robert; Herkenhoff, K. E.; De la Torre Juárez, M.; Richardson, M. I.; Stott, A.; Murdoch, N.; Sánchez Lavega, Agustín; Wolff, Michael; Arruego, I.; Sebastián, E.; Navarro López, Sara; Gómez Elvira, J.; Tamppari, L. K.; Smith, Michael D.; Lepinette Malvitte, A.; Viúdez Moreiras, Daniel; Harri, Ari-Matti; Genzer, María; Hieta, M.; Lorenz, R. D.; Conrad, Pamela G.; Gómez, Felipe; McConnochie, Tim H.; Mimoun, D.; Tate, C.; Bertrand, T.; Belli, J. F.; Maki, Justin N.; Rodríguez Manfredi, J. A.; Wiens, R. C.; Chide, B.; Maurice, S.; Zorzano, María-Paz; Mora Sotomayor, L.; Baker, M. M.; Banfield, D.; Pla García, J.; Beyssac, O.; Brown, Adrian Jon; Clark, B.; Montmessin, F.; Fischer, E.; Patel, P.; Del Río Gaztelurrutia, T.; Fouchet, T.; Francis, R.; Guzewich, Scott; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); Gobierno Vasco; National Aeronautics and Space Administration (NASA); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars’ ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover’s novel environmental sensors and Jezero crater’s dusty environment remedy this. In Perseverance’s first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty (“dust devils”). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.
Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater
(AGU Advancing Earth and Space Science, 2022-11-16) Lemmon, M. T.; Smith, Michael D.; Viúdez Moreiras, Daniel; De la Torre Juárez, M.; Vicente Retortillo, Álvaro; Munguira, A.; Sánchez Lavega, Agustín; Hueso, R.; Martínez, Germán M.; Chide, B.; Sullivan, Robert; Toledo, D.; Tamppari, L. K.; Bertrand, T.; Bell, J. F.; Newman, C. E.; Baker, M.; Banfield, D.; Rodríguez Manfredi, J. A.; Maki, Justin N.; Apéstigue, Víctor; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); Ministerio de Economía y Competitividad (MINECO); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Rovers and landers on Mars have experienced local, regional, and planetary-scale dust storms. However, in situ documentation of active lifting within storms has remained elusive. Over 5–11 January 2022 (LS 153°–156°), a dust storm passed over the Perseverance rover site. Peak visible optical depth was ∼2, and visibility across the crater was briefly reduced. Pressure amplitudes and temperatures responded to the storm. Winds up to 20 m s−1 rotated around the site before the wind sensor was damaged. The rover imaged 21 dust-lifting events—gusts and dust devils—in one 25-min period, and at least three events mobilized sediment near the rover. Rover tracks and drill cuttings were extensively modified, and debris was moved onto the rover deck. Migration of small ripples was seen, but there was no large-scale change in undisturbed areas. This work presents an overview of observations and initial results from the study of the storm.
Hexagonal Prisms Form in Water-Ice Clouds on Mars, Producing Halo Displays Seen by Perseverance Rover
(AGU Advancing Earth and Space Science, 2022-10-03) Lemmon, M. T.; Toledo, D.; Apéstigue, Víctor; Arruego, Ignacio; Wolff, Michael; Patel, P.; Guzewich, Scott; Colaprete, A.; Vicente Retortillo, Álvaro; Tamppari, L. K.; Montmessin, F.; De la Torre Juárez, M.; Maki, Justin N.; McConnochie, Tim H.; Brown, Adrian Jon; Bell, J. F.; Instituto Nacional de Técnica Aeroespacial (INTA); Ministerio de Ciencia e Innovación (MICINN); NASA Jet Propulsion Laboratory (JPL); Arizona State University (ASU); Ministerio de Economía y Competitividad (MINECO); Gobierno Vasco; European Research Council (ERC); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Observations by several cameras on the Perseverance rover showed a 22° scattering halo around the Sun over several hours during northern midsummer (solar longitude 142°). Such a halo has not previously been seen beyond Earth. The halo occurred during the aphelion cloud belt season and the cloudiest time yet observed from the Perseverance site. The halo required crystalline water-ice cloud particles in the form of hexagonal columns large enough for refraction to be significant, at least 11 μm in diameter and length. From a possible 40–50 km altitude, and over the 3.3 hr duration of the halo, particles could have fallen 3–12 km, causing downward transport of water and dust. Halo-forming clouds are likely rare due to the high supersaturation of water that is required but may be more common in northern subtropical regions during northern midsummer.
The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission
(Springer Link, 2021-04-13) Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Alonso, A.; Apéstigue, Víctor; Arruego, Ignacio; Atienza, T.; Banfield, D.; Boland, J.; Carrera, M. A.; Castañer, L.; Ceballos Cáceres, J.; Chen Chen, H.; Cobos, A.; Conrad, Pamela G.; Cordoba, E.; Del Río Gaztelurrutia, T.; Vicente Retortillo, Álvaro; Domínguez Pumar, M.; Espejo, S.; Fairén, Alberto G.; Fernández Palma, A.; Ferrándiz, Ricardo; Ferri, F.; Fischer, E.; García Manchado, A.; García Villadangos, M.; Genzer, María; Giménez, Á.; Gómez Elvira, J.; Gómez, Felipe; Guzewich, Scott; Harri, Ari-Matti; Hernández, C. D.; Hieta, M.; Hueso, R.; Jaakonaho, I.; Jiménez Martín, Juan José; Jiménez, V.; Larman, A.; Leiter, R.; Lepinette Malvitte, A.; Lemmon, M. T.; López, G.; Madsen, Soren N.; Mäkinen, T.; Marín Jiménez, M.; Martín Soler, J.; Martínez, Germán M.; Molina, A.; Mora Sotomayor, L.; Moreno Álvarez, J. F.; Navarro López, Sara; Newman, C. E.; Ortega, Cristina; Parrondo, María Concepción; Peinado, V.; Peña, A.; Pérez Grande, I.; Pérez Hoyos, S.; Pla García, J.; Polkko, J.; Postigo, M.; Prieto-Ballesteros, Olga; Rafkin, Scot C. R.; Ramos, Miguel; Richardson, M. I.; Romeral, J.; Romero Guzmán, Catalina; Runyon, Kirby; Saiz López, A.; Sánchez Lavega, Agustín; Sard, I.; Schofield, J. T.; Sebastián, E.; Smith, Michael D.; Sullivan, Robert; Tamppari, L. K.; Thompson, A. D.; Toledo, D.; Torrero, F.; Torres, J.; Urquí, R.; Velasco, T.; Viúdez Moreiras, Daniel; Zurita, S.; Agencia Estatal de Investigación (AEI); European Research Council (ERC); Gobierno Vasco; Rodríguez Manfredi, J. A. [0000-0003-0461-9815]; Saiz López, A. [0000-0002-0060-1581]; Chen, H. [0000-0001-9662-0308]; Pérez Hoyos, S. [0000-0002-2587-4682]
NASA’s Mars 2020 (M2020) rover mission includes a suite of sensors to monitor current environmental conditions near the surface of Mars and to constrain bulk aerosol properties from changes in atmospheric radiation at the surface. The Mars Environmental Dynamics Analyzer (MEDA) consists of a set of meteorological sensors including wind sensor, a barometer, a relative humidity sensor, a set of 5 thermocouples to measure atmospheric temperature at ∼1.5 m and ∼0.5 m above the surface, a set of thermopiles to characterize the thermal IR brightness temperatures of the surface and the lower atmosphere. MEDA adds a radiation and dust sensor to monitor the optical atmospheric properties that can be used to infer bulk aerosol physical properties such as particle size distribution, non-sphericity, and concentration. The MEDA package and its scientific purpose are described in this document as well as how it responded to the calibration tests and how it helps prepare for the human exploration of Mars. A comparison is also presented to previous environmental monitoring payloads landed on Mars on the Viking, Pathfinder, Phoenix, MSL, and InSight spacecraft.










