Proyecto de Investigación:
ESP2014-54062-R

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

ESP2014-54062-R

Autores

Publicaciones

PublicaciónAcceso Abierto
Multiple water band detections in the CARMENES near-infrared transmission spectrum of HD 189733 b
(EDP Sciences, 2019-01-10) Alonso Floriano, F. J.; Sánchez López, A.; Snellen, Ignas; López Puertas, M.; Nagel, E.; Amado, P. J.; Bauer, F. F.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.; Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Aceituno, J.; Anglada Escudé, G.; Béjar, V. J. S.; Guenther, E. W.; Henning, T.; Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.; Morales, J. C.; Tal Or, L.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Zechmeister, M.; European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Ministerio de Ciencia e Innovación (MICINN); Agencia Estatal de Investigación (AEI); Zapatero Osorio, M. R. [0000-0001-5664-2852]; Ribas, I. [0000-0002-6689-0312]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Aims. We explore the capabilities of CARMENES for characterising hot-Jupiter atmospheres by targeting multiple water bands, in particular, those at 1.15 and 1.4 μm. Hubble Space Telescope observations suggest that this wavelength region is relevant for distinguishing between hazy and/or cloudy and clear atmospheres. Methods. We observed one transit of the hot Jupiter HD 189733 b with CARMENES. Telluric and stellar absorption lines were removed using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra were analysed for water absorption with cross-correlation techniques using synthetic atmospheric absorption models. Results. We report a cross-correlation peak at a signal-to-noise ratio (S/N) of 6.6, revealing the presence of water in the transmission spectrum of HD 189733 b. The absorption signal appeared slightly blueshifted at –3.9 ± 1.3 km s−1. We measured the individual cross-correlation signals of the water bands at 1.15 and 1.4 μm, finding cross-correlation peaks at S/N of 4.9 and 4.4, respectively. The 1.4 μm feature is consistent with that observed with the Hubble Space Telescope. Conclusions. The water bands studied in this work have been mainly observed in a handful of planets from space. Being able also to detect them individually from the ground at higher spectral resolution can provide insightful information to constrain the properties of exoplanet atmospheres. Although the current multi-band detections can not yet constrain atmospheric haze models for HD 189733 b, future observations at higher S/N could provide an alternative way to achieve this aim.
PublicaciónAcceso Abierto
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
(American Association for the Advancement of Science, 2019-09-27) Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, Enrique; Rodríguez, E.; López González, M. J.; Rodríguez López, C.; Stock, S.; Zechmeister, M.; Luque, R.; Gesa, L.; Pedraz, S.; Baroch, D.; Sarkis, P.; Lafarga, M.; Johnson, E. N.; Anglada Escudé, G.; González Álvarez, E.; Perryman, M. A. C.; Dreizler, S.; Sarmiento, L. F.; Tal Or, L.; Labarga, F.; Reffert, S.; Rebolo, R.; Schweitzer, A.; Schäfer, S.; Hagen, H. J.; Lázaro, F. J.; Quirrenbach, A.; Perger, M.; Guenther, E. W.; Schlecker, M.; Montes, D.; Jeffers, S. V.; Cortés Contreras, M.; Kürster, M.; Schmitt, J. H. M. M.; Aceituno, Francisco José; Abellán, F. J.; Rosich, A.; Aceituno, J.; Schöfer, P.; Arroyo Torres, B.; Amado, P. J.; Antona, R.; Solano, Enrique; Benítez, D.; Kaminski, A.; Becerril Jarque, S.; Sota, A.; Kehr, M.; Abril, M.; Brinkmöller, M.; Béjar, V. J. S.; Ammler von Eiff, M.; Calvo Ortega, R.; Zapatero Osorio, M. R.; Barrado, D.; Cardona Guillén, C.; Yan, F.; Bergond, G.; Casanova, V.; Klahr, H.; Chaturvedi, P.; Nagel, E.; Claret, A.; Trifonov, T.; Czesla, S.; Henning, T.; Dorda, R.; Seifert, W.; Fernández Hernández, Maite; Alonso Floriano, F. J.; Azzaro, M.; Berdiñas, Z. M.; Del Burgo, C.; Cano, J.; Carro, J.; Casasayas Barris, N.; Cifuentes, C.; Colomé, J.; Díez Alonso, E.; Emsenhuber, A.; Guàrdia, J.; Guijarro, A.; De Guindos, E.; Hatzes, Artie; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero, F.; Hintz, D.; Klüter, J.; González Peinado, R.; González Hernández, J. I.; González Cuesta, L.; De Juan, E.; Stahl, O.; Burn, R.; Kim, M.; Fernández Martín, A.; Lara, L. M.; Mordasini, C.; Labiche, N.; Cárdenas, M. C.; Lampón, M.; Ferro, I. M.; López del Fresno, M.; Passegger, V. M.; Lizon, Jean Louis; Casal, E.; Lodieu, N.; Fuhrmeister, B.; Mancini, L.; López Santiago, J.; Kemmer, J.; Mall, U.; Galadí Enríquez, D.; Martín Fernández, P.; Marfil, E.; Lalitha, S.; Martín, Eduardo L.; Gallardo Cava, I.; Mirabet, E.; Llamas, M.; Marvin, E. L.; García Vargas, M. L.; Nortmann, L.; Magán Madinabeitia, H.; Nelson, Richard; García Piquer, A.; Pallé, E.; Marín Molina, J. A.; Pascual Granado, J.; Caballero, J. A.; Martínez Rodríguez, H.; Pérez Medialdea, D.; Huke, P.; Naranjo, V.; Rabaza, O.; Huber, A.; Ofir, A.; Redondo, P.; Holgado, G.; Rodler, F.; Klutsch, A.; Sabotta, S.; Launhardt, R.; Salz, M.; López Salas, F. J.; Sánchez Carrasco, M. A.; Mandel, H.; Sanz Forcada, J.; Martín Ruiz, S.; Moya, A.; Nowak, G.; Pavlov, Alexander; Pérez Calpena, A.; Ramón Ballesta, A.; Rix, H. W.; Rodríguez Trinidad, A.; Sadegi, S.; Sánchez Blanco, E.; Sánchez López, A.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Johansen, A.; Stuber, T.; Israel Science Foundation (ISF); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Swiss National Science Foundation (SNSF); Deutsches Zentrum für Luft- und Raumfahrt (DLR); Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR); European Research Council (ERC); Generalitat de Catalunya; Deutsche Forschungsgemeinschaft (DFG); Queen Mary University of London; Consejo Nacional de Ciencia y Tecnología (CONACYT); Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Morales, J. C. [0000-0003-0061-518X]; Mustill, A. J. [0000-0002-2086-3642]; Ribas, I. [0000-0002-6689-0312]; Davies, M. B. [0000-0001-6080-1190]; Bauer, F. F. [0000-0003-1212-5225]; Herrrero, E. [0000-0001-8602-6639]; Rodríguez, E. [0000-0001-6827-9077]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; López González, M. J. [0000-0001-8104-5128]; Rodríguez López, C. [0000-0001-5559-7850]; Sarkis, P. [0000-0001-8128-3126]; López Santiago, J. [0000-0003-2402-8166]; Vilardell, F. [0000-0003-0441-1504]; Winkler, J. [0000-0003-0568-8820]; Nowak, G. [0000-0002-7031-7754]; Béjar, V. J. S. [0000-0002-5086-4232]; Luque, R. [0000-0002-4671-2957]; Pérez Calpena, A. [0000-0001-7361-9240]; Sota, A. [https://orcid.org/0000-0002-9404-6952]; Klahr, H. [0000-0002-8227-5467]; Mordasini, C. [0000-0002-1013-2811]; Rodler, F. [0000-0003-0650-5723]; Tabernero, H. [0000-0002-8087-4298]; Cortés Contreras, M. [0000-0003-3734-9866]; Lafarga, M. [0000-0002-8815-9416]; Sánchez López, A. [0000-0002-0516-7956]; Yan, F. [0000-0001-9585-9034]; Reffert, S. [0000-0002-0460-8289]; Rosich, A. [0000-0002-9141-3067]; Sarmiento, L. F. [0000-0002-8475-9705]; Perger, M. [0000-0001-7098-0372]; Sabotta, S. [0000-0001-9078-5574]; Guenther, E. W. [0000-0002-9130-6747]; Kaminski, A. [0000-0003-0203-8208]; Schmitt, J. H. M. M. [0000-0003-2554-9916]; Aceituno, J. [0000-0003-0487-1105]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Stock, S. [0000-0002-1166-9338]; Nagel, E. [0000-0002-4019-3631]; Barrado, D. [0000-0002-5971-9242]; Tulloch, S. [0000-0003-0840-8521]; Trifonov, T. [0000-0002-0236-775X]; Bergond, G. [0000-0003-3132-9215]; Burn, R. [0000-0002-9020-7309]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Montes, D. [0000-0002-7779-238X]; Cano, J. [0000-0003-1984-5401]; Cardona Guillén, C. [0000-0002-2198-4200]; Baroch, D. [0000-0001-7568-5161]; Ammler-von Eiff, M. [0000-0001-9565-1698]; Chaturvedi, P. [0000-0002-1887-1192]; Cifuentes, C. [0000-0003-1715-5087]; Anglada Escudé, G. [0000-0002-3645-5977]; Becerril Jarque, S. [0000-0001-9009-1150]; González Cuesta, L. [0000-0002-1241-5508]; Díez Alonso, E. [0000-0002-5826-9892]; Emsenhuber, A. [0000-0002-8811-1914]; Passegger, V. M. [0000-0002-8569-7243]; García Vargas, M. L. [0000-0002-2058-3528]; González Álvarez, E. [0000-0002-4820-2053]; Amado, P. J. [0000-0002-8388-6040]; Carro, J. [0000-0002-0838-3603]; Guàrdia, J. [0000-0002-7191-9001]; Abellán, F. J. [0000-0002-5724-1636]; Colomé, J. [0000-0002-1678-2241]; Hermelo, I. [0000-0001-9178-694X]; Hintz, D. [0000-0002-5274-2589]; Arroyo Torres, B. [0000-0002-3392-4694]; Fuhrmeister, B. [0000-0001-8321-5514]; Johnson, E. [0000-0003-2260-5134]; De Juan Fernández, E. [0000-0002-9382-4505]; Berdiñas, Z. M. [0000-0002-6057-6461]; González Hernández, J. I. [0000-0002-0264-7356]; Klüter, J. [0000-0002-3469-5133]; Klutsch, A. [0000-0001-7869-3888]; Calvo Ortega, R. [0000-0003-3693-6030]; Guijarro, A. [0000-0001-5518-1759]; Aceituno, F. J. [0000-0001-8074-4760]; Lara, L. M. [0000-0002-7184-920X]; Launhardt, R. [0000-0002-8298-2663]; Casasayas Barris, N. [0000-0002-2891-8222]; López del Fresno, M. [0000-0002-9479-7780]; Magan Madinabeitia, H. [0000-0003-1243-4597]; Czesla, S. [0000-0002-4203-4773]; Kehr, M. [0000-0002-7420-7368]; Marín Molina, J. A. [0000-0002-3525-0806]; Galadí Enríquez, D. [0000-0003-4946-5653]; Labarga, F. [0000-0002-7143-0206]; Martínez Rodríguez, H. [0000-0002-1919-228X]; Marvin, C. J. [0000-0002-2249-2611]; González Peinado, R. [0000-0002-6658-8930]; Lizon, J. L. [0000-0001-8928-2566]; Naranjo, V. [0000-0003-0097-1061]; Nelson, R. [0000-0002-9687-8779]; De Guindos, E. [0000-0002-8124-9101]; Manici, L. [0000-0002-9428-8732]; Ofir, A. [0000-0002-9152-5042]; Pascual Granado, J. [0000-0003-0139-6951]; Huke, P. [0000-0001-5913-2743]; Martín, E. [0000-0002-1208-4833]; García Piquer, A. [0000-0002-6872-4262]; Rabaza, O. [0000-0003-2766-2103]; Ramón Ballesta, A. [0000-0002-4323-0610]; Kim, M. [0000-0001-6218-2004]; Rodríguez Trinidad, A. [0000-0002-3356-8634]; Sadegi, S. [0000-0001-9897-6121]; Lampón, M. [0000-0002-0183-7158]; Nortmann, L. [0000-0001-8419-8760]; Sanz Forcada, J. [0000-0002-1600-7835]; Lodieu, N. [0000-0002-3612-8968]; Pedraz, S. [0000-0003-1346-208X]; Schäfer, S. [0000-0001-8597-8048]; Schlecker, M. [0000-0001-8355-2107]; Marfil, E. [0000-0001-8907-4775]; Redondo, P. G. [0000-0001-5992-5778]; Schöfer, P. [0000-0002-5969-3708]; Solano, E. [0000-0003-1885-5130]; Martín Ruiz, S. [0000-0002-9006-7182]; Sánchez Carrasco, M. A. [0000-0001-5533-3660]; Stuber, T. [0000-0003-2185-0525]; Suárez, J. C. [0000-0003-3649-8384]; Moya, A. [0000-0003-1665-5389]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science
PublicaciónAcceso Abierto
Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel
(EDP Sciences, 2019-09-23) Sánchez López, A.; Alonso Floriano, F. J.; López Puertas, M.; Snellen, Ignas; Funke, B.; Nagel, E.; Bauer, F. F.; Amado, P. J.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.; Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Anglada Escudé, G.; Béjar, V. J. S.; Casasayas Barris, N.; Galadí Enríquez, D.; Guenther, E. W.; Henning, T.; Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.; Morales, J. C.; Stangret, M.; Tal Or, L.; Sanz Forcada, J.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Zechmeister, M.; Ministerio de Ciencia e Innovación (MICINN); Israel Science Foundation (ISF); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Sánchez López, A. [0000-0002-0516-7956]; Alonso Floriano, F. J. [0000-0003-1202-5734]; Snellen, I. [0000-0003-1624-3667]; Zapatero Osorio, M. R. [0000-0001-5664-2852]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Aims. We aim at detecting water vapor in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES. Methods. The water vapor absorption lines from the atmosphere of the planet are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s−1, whilst the Earth’s telluric and the stellar lines can be considered quasi-static. We took advantage of this shift to remove the telluric and stellar lines using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve the information from those lines by cross-correlating the residual spectra with models of the atmospheric absorption of the planet. Results. We find a cross-correlation signal with a signal-to-noise ratio (S/N) of 6.4, revealing H2O in HD 209458 b. We obtain a net blueshift of the signal of –5.2 −1.3+2.6 km s−1 that, despite the large error bars, is a firm indication of day- to night-side winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2O individually from the three near infrared bands covered by CARMENES. We detect H2O from its 0.96–1.06 μm band with a S/N of 5.8, and also find hints of a detection from the 1.06–1.26 μm band, with a low S/N of 2.8. No clear planetary signal is found from the 1.26–1.62 μm band. Conclusions. Our significant H2O signal at 0.96–1.06 μm in HD 209458 b represents the first detection of H2O from this band individually, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μm bands. H2O is detected from the 0.96–1.06 μm band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter, in line with previous studies. Future data gathered at more stable conditions and with larger S/N at both optical and near-infrared wavelengths could help to characterize the presence of aerosols in HD 209458 b and other planets.
PublicaciónAcceso Abierto
Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES.
(EDP Sciences, 2020-10-27) Sánchez López, A.; López Puertas, M.; Snellen, Ignas; Nagel, E.; Bauer, F. F.; Pallé, E.; Tal Or, L.; Amado, P. J.; Caballero, P. J.; Czesla, S.; Nortmann, L.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Aceituno, J.; Béjar, V. J. S.; Casasayas Barris, N.; Henning, T.; Molaverdikhani, K.; Montes, D.; Stangret, M.; Zapatero Osorio, M. R.; Zechmeister, M.; European Research Council (ERC); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Ministerio de Ciencia e Innovación (MICINN); Pallé, E. [0000-0003-0987-1593]; Sánchez López, A. [0000-0002-0516-7956]; Nagel, E. [0000-0002-4019-3631]; Montes, D. [0000-0002-7779-238X]; Molaverdikhani, K. [0000-0002-0502-0428]; López Puertas, M. [0000-0003-2941-7734]; Snellen, I. A. G. [0000-0003-1624-3667]; Centro de Excelencia Científica Severo Ochoa Instituto de Astrofísica de Andalucía CSIC, SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Context. Relatively large radii of some hot Jupiters observed in the ultraviolet and blue-optical are generally interpreted to be due to Rayleigh scattering by high-altitude haze particles. However, the haze composition and its production mechanisms are not fully understood, and observational information is still limited. Aims. We aim to study the presence of hazes in the atmospheres of HD 209458 b and HD 189733 b with high spectral resolution spectra by analysing the strength of water vapour cross-correlation signals across the red optical and near-infrared wavelength ranges. Methods. A total of seven transits of the two planets were observed with the CARMENES spectrograph at the 3.5 m Calar Alto telescope. Their Doppler-shifted signals were disentangled from the telluric and stellar contributions using the detrending algorithm SYSREM. The residual spectra were subsequently cross-correlated with water vapour templates at 0.70–0.96 μm to measure the strength of the water vapour absorption bands. Results. The optical water vapour bands were detected at 5.2σ in HD 209458 b in one transit, whereas no evidence of them was found in four transits of HD 189733 b. Therefore, the relative strength of the optical water bands compared to those in the near-infrared were found to be larger in HD 209458 b than in HD 189733 b. Conclusions. We interpret the non-detection of optical water bands in the transmission spectra of HD 189733 b, compared to the detection in HD 209458 b, to be due to the presence of high-altitude hazes in the former planet, which are largely absent in the latter. This is consistent with previous measurements with the Hubble Space Telescope. We show that currently available CARMENES observations of hot Jupiters can be used to investigate the presence of haze extinction in their atmospheres.
PublicaciónAcceso Abierto
He I λ 10 830 Å in the transmission spectrum of HD209458 b
(EDP Sciences, 2019-09-12) Alonso Floriano, F. J.; Snellen, Ignas; Czesla, S.; Bauer, F. F.; Salz, M.; Lampón, M.; Lara, L. M.; Nagel, E.; López Puertas, M.; Nortmann, L.; Sánchez López, A.; Sanz Forcada, J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada Escudé, G.; Béjar, V. J. S.; Brinkmöller, M.; Hatzes, Artie; Henning, T.; Kaminski, A.; Kürster, M.; Labarga, F.; Montes, D.; Pallé, E.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Ministerio de Economía y Competitividad (MINECO); Max-Planck-Gesellschaft (MPG); European Research Council (ERC); Comunidad de Madrid; Agencia Estatal de Investigación (AEI); Alonso Floriano, F. J. [0000-0003-1202-5734]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
Context. Recently, the He I triplet at 10 830 Å was rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmospheres of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far. Aims. Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation. Methods. We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out-of-transit data, for telluric absorption using the MOLECFIT software, and for the sky emission lines using simultaneous sky measurements through a second fibre. Results. We detect He I absorption at a level of 0.91 ± 0.10% (9 σ) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 ± 1.3 km s−1. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed. Conclusions. Our results further support a close relation between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray, and extreme-UV irradiation.

Unidades organizativas

Descripción

Palabras clave