Proyecto de Investigación:
CGL2015-74254-JIN

Cargando...
Logotipo del proyecto

Colaboradores

Financiadores

ID

CGL2015-74254-JIN

Autores

Publicaciones

PublicaciónRestringido
Detection of Potential Lipid Biomarkers in Oxidative Environments by Raman Spectroscopy and Implications for the ExoMars 2020-Raman Laser Spectrometer Instrument Performance.
(Mary Ann Liebert Publishers, 2020-03-02) Carrizo, D.; Muñoz Iglesias, V.; Fernández Sampedro, M.; Gil Lozano, C.; Sánchez García, Laura; Prieto-Ballesteros, Olga; Medina García, J.; Rull, F.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Fernández Sampedro, M. [0000-0003-1932-7591]; Lozano, C. G. [0000-0003-3500-2850]; Muñoz Iglesias, V. [0000-0002-1159-9093]; Sánchez García, L. [0000-0002-7444-1242]; Prieto Ballesteros, O. [0000-0002-2278-1210]; Carrizo, D. [0000-0003-1568-4591]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
The aim of the European Space Agency's ExoMars rover mission is to search for potential traces of present or past life in the swallow subsurface (2 m depth) of Mars. The ExoMars rover mission relies on a suite of analytical instruments envisioned to identify organic compounds with biological value (biomarkers) associated with a mineralogical matrix in a highly oxidative environment. We investigated the feasibility of detecting basic organics (linear and branched lipid molecules) with Raman laser spectroscopy, an instrument onboard the ExoMars rover, when exposed to oxidant conditions. We compared the detectability of six lipid molecules (alkanes, alkanols, fatty acid, and isoprenoid) before and after an oxidation treatment (15 days with hydrogen peroxide), with and without mineral matrix support (amorphous silica rich vs. iron rich). Raman and infrared spectrometry was combined with gas chromatography-mass spectrometry to determine detection limits and technical constrains. We observed different spectral responses to degradation depending on the lipid molecule and mineral substrate, with the silica-rich material showing better preservation of organic signals. These findings will contribute to the interpretation of Raman laser spectroscopy results on cores from the ExoMars rover landing site, the hydrated silica-enriched delta fan on Cogoon Vallis (Oxia Planum).
PublicaciónAcceso Abierto
Simulating Mars Drilling Mission for Searching for Life: Ground-Truthing Lipids and Other Complex Microbial Biomarkers in the Iron-Sulfur Rich Río Tinto Analog.
(Mary Ann Liebert Publishers, 2020-09-15) Sánchez García, Laura; Fernández Martínez, Miguel Ángel; Moreno Paz, Mercedes; Carrizo, D.; García Villadangos, M.; Manchado, J. M.; Stoker, C. R.; Glass, B.; Parro, Víctor; Ministerio de Economía y Competitividad (MINECO); National Aeronautics and Space Administration (NASA); Sánchez García, L. [0000-0002-7444-1242]; Carrizo, D. [0000-0003-1568-4591]; Fernández Martínez, M. A. [0000-0003-1694-7832]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.
PublicaciónAcceso Abierto
Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold
(Mary Ann Liebert, 2019-12-04) Lezcano, M. A.; Moreno Paz, Mercedes; Carrizo, D.; Prieto-Ballesteros, Olga; Fernández Martínez, Miguel Ángel; Sánchez García, Laura; Blanco, Yolanda; Puente Sánchez, Fernando; De Diego Castilla, Graciela; García Villadangos, M.; Fairén, A.; Parro, Víctor; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); European Commission (EC); Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737
Substrate–atmosphere interfaces in Antarctic geothermal environments are hot–cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5–76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin–Benson–Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.

Unidades organizativas

Descripción

Palabras clave