Publicación:
Enhanced wall-boundary modeling for turbulent flows using the lattice Boltzmann method with adaptive Cartesian grids

dc.contributor.authorPonsin Roca, Jorge
dc.contributor.authorLozano, Carlos
dc.date.accessioned2026-01-29T07:52:48Z
dc.date.available2026-01-29T07:52:48Z
dc.date.issued2026-01-20
dc.description.abstractWe propose an enhanced wall-boundary treatment for the lattice Boltzmann method (LBM), designed for high-Reynolds-number turbulent flows on adaptively refined Cartesian grids. The method improves the slip-velocity bounce-back scheme by coupling it with a near-wall turbulence model based on an analytical wall function. The Spalart–Allmaras (negative) turbulence model is solved using a second-order finite-difference scheme and integrated within the LBM framework to statistically represent the Reynolds-Averaged Navier–Stokes (RANS) equations (LBM-RANS). The approach is validated on two benchmark configurations: the National Advisory Committee for Aeronautics (NACA) 0012 airfoil and the McDonnell Douglas (MD)-30P30N multielement high-lift configuration. LBM-RANS results show good agreement with conventional finite-volume RANS solutions and experimental data for key aerodynamic quantities, including pressure and skin-friction distributions as well as turbulent boundary-layer velocity profiles and eddy-viscosity fields. The method delivers smooth and accurate predictions of skin friction, which are often challenging for immersed-boundary approaches on Cartesian grids. The auxiliary geometric data required for enforcing the turbulent boundary condition are minimal, making the method potentially well-suited for graphics processing unit-based implementations. Moreover, no ad hoc near-wall treatments are needed, as the boundary condition is applied naturally via the link-wise bounce-back scheme. These results illustrate that the proposed LBM-RANS framework can robustly and accurately simulate high-Reynolds-number turbulent two-dimensional flows over complex aerodynamic geometries under equilibrium or near-equilibrium conditions.
dc.description.peerreviewedPeerreview
dc.description.sponsorshipIDATEC (IGB21001)
dc.identifier.citationPhysics of Fluids 38: 015169
dc.identifier.doi10.1063/5.0306421
dc.identifier.issn1089-7666
dc.identifier.issn1070-6631
dc.identifier.otherhttps://pubs.aip.org/aip/pof/article-abstract/38/1/015169/3378074/Enhanced-wall-boundary-modeling-for-turbulent
dc.identifier.urihttps://hdl.handle.net/20.500.12666/1674
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.isreferencedby1.E. Fares, B. Duda, and M. Khorrami, “Airframe noise prediction of a full aircraft in model and full scale using lattice Boltzmann approach,” AIAA Paper No. 2016-2707, 2016. 2.B. König and E. Fares, “Exa PowerFLOW simulations for the sixth AIAA drag prediction workshop,” J. Aircr. 55(4), 1482–1490 (2018).https://doi.org/10.2514/1.C034480 3.B. König, E. Fares, M. Murayama, and Y. Ito, “PowerFLOW simulations for the third AIAA high lift prediction workshop,” AIAA Paper No. 2018-1255, 2018. 4.M. Barad, J. Kocheemoolayil, and C. Kiris, “Lattice Boltzmann and Navier-Stokes Cartesian CFD approaches for airframe noise predictions,” AIAA Paper No. 2017-4404, 2017. 5.A. Sengissen, J.-C. Giret, C. Coreixas, and J.-F. Boussuge, “Simulations of LAGOON landing-gear noise using lattice Boltzmann,” AIAA Paper No. 2015-2993, 2015. 6.C. C. Kiris, A.-S. Ghate, O. M. F. Browne, J. Slotnick, and J. Larson, “HLPW-4: Wall-modeled large eddy simulation and lattice-Boltzmann technology focus group workshop summary,” J. Aircr. 60(4), 1118–1123 (2023).https://doi.org/10.2514/1.C037193 7.J. Degrigny, “Towards the computational prediction of low-speed buffet: Improved wall modeling for the lattice Boltzmann method,” Ph.D. thesis (Aix Marsella Université, 2021). 8.X. He, Q. Zou, L.-S. Luo, and M. Dembo, “Analytic Solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model,” J. Stat. Phys. 87, 115–136 (1997).https://doi.org/10.1007/BF02181482 9.Z.-Q. Dong, L.-P. Wang, and C. Peng, “A systematic study of hidden errors in the bounce-back scheme and their various effects in the lattice Boltzmann simulation of viscous flows,” Phys. Fluids 34, 093608 (2022).https://doi.org/10.1063/5.0106954 10.I. Ginzburg and D. D'Humieres, “Multi-reflection boundary conditions for Lattice Boltzmann Methods,” Phys. Rev. E 68, 066614 (2003).https://doi.org/10.1103/PhysRevE.68.066614 11.O. Filippova, S. Succi, F. Mazzocco, C. Arrighetti, G. Bella, and D. Hänel, “Multiscale Lattice Boltzmann schemes with turbulence modeling,” J. Comput. Phys. 170(2), 812–829 (2001).https://doi.org/10.1006/jcph.2001.6764 12.Z. Guo, C. Zheng, and B. Shi, “Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method,” Chin. Phys. 11(4), 366–374 (2002).https://doi.org/10.1088/1009-1963/11/4/310 13.M. Haussmann, A. Claro, G. Lipeme, N. Rivière, H. Nirsch, and M. J. Krause, “Large-eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method - Application to Coriolis mass flowmeter,” Comput. Math. Appl. 78(10), 3285–3302 (2019).https://doi.org/10.1016/j.camwa.2019.04.033 14.M. Haussmann, F. Ries, J. Jeppener-Haltenhoff, Y. Li, M. Schmidt, C. Welch, L. Illmann, B. Böhm, H. Nirschl, M. Krause, and A. Sadiki, “Evaluation of near-wall-modeled large eddy lattice Boltzmann method for the analysis of complex flows relevant to IC engines,” Computation 8(2), 43 (2020).https://doi.org/10.3390/computation8020043 15.H. Maeyama, T. Imamura, J. Osaka, and N. Kurimoto, “Unsteady turbulent flow simulation using lattice Boltzmann method with near-wall modeling,” AIAA Paper No. 2020-2565, 2020. 16.H. Maeyama, T. Imamura, J. Osaka, and N. Kurimoto, “Application of wall-modeled large-eddy simulation based on lattice Boltzmann method for external flow analyses,” AIAA Paper No. 2021-0458, 2021. 17.H. Maeyama, T. Imamura, J. Osaka, and N. Kurimoto, “Unsteady aerodynamic simulations by the lattice Boltzmann method with near-wall modeling on hierarchical Cartesian grids,” Comput. Fluids 233, 105249 (2022).https://doi.org/10.1016/j.compfluid.2021.105249 18.O. Malaspinas and P. Sagaut, “Wall model for large-eddy simulation based on the lattice Boltzmann method,” J. Comput. Phys. 275, 25–40 (2014).https://doi.org/10.1016/j.jcp.2014.06.020 19.S. Willhem, J. Jacob, and P. Sagaut, “An explicit power-law-based wall model for lattice Boltzmann method-Reynolds averaged numerical simulations of the flow around airfoils,” Phys. Fluids 30, 065111 (2018).https://doi.org/10.1063/1.5031764 20.S.-H. Cai, J. Degrigny, J.-F. Boussuge, and P. Sagaut, “Coupling of wall models and immersed boundaries on Cartesian grids,” J. Comput. Phys. 429, 109995 (2021).https://doi.org/10.1016/j.jcp.2020.109995 21.J. Ponsin and C. Lozano, “Wall boundary conditions for lattice Boltzmann simulations of turbulent flows with wall functions,” Phys. Fluids 37, 095191 (2025).https://doi.org/10.1063/5.0283930 22.J. Degrigny, S.-H. Cai, J.-F. Boussuge, and P. Sagaut, “Improved wall model treatment for aerodynamic flows in LBM,” Comput. Fluids 227, 105041 (2021).https://doi.org/10.1016/j.compfluid.2021.105041 23.J. Husson, M. Terracol, S. Deck, and T. L. Garrec, “Critical assessment of wall model numerical implementation in LBM,” Comput. Fluids 257, 105857 (2023).https://doi.org/10.1016/j.compfluid.2023.105857 24.S. Mozaffari, J. Jacob, and P. Sagaut, “Assessment of wall modeling with adverse pressure gradient for high Reynolds number separated flows,” Flow. Turbul. Combust. 113, 923–945 (2024).https://doi.org/10.1007/s10494-024-00562-2 25.J. Husson, M. Terracol, S. Deck, and T. L. Garrec, “A comprehensive framework for robust hybrid RANS/LES simulations of wall-bounded flows in LBM,” J. Comput. Phys. 502, 112814 (2024).https://doi.org/10.1016/j.jcp.2024.112814 26.J. Husson, M. Terracol, and S. Deck, “A critical assessment of Navier–Stokes and lattice Boltzmann frameworks applied to high-lift configuration through a multiresolution approach,” Phys. Fluids 36, 085116 (2024).https://doi.org/10.1063/5.0214409 27.T. Krüger, H. Kasumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. Viggen, The Lattice Boltzmann Method (Springer, 2017). 28.M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a Boltzmann-lattice fluid with boundaries,” Phys. Fluids 13, 3452–3459 (2001).https://doi.org/10.1063/1.1399290 29.A. Pasquali, M. Geier, and M. Krafczyk, “Near-wall treatment for the simulation of turbulent flow by the cumulant lattice Boltzmann method,” Comput. Math. Appl. 79, 195–212 (2020).https://doi.org/10.1016/j.camwa.2017.11.022 30.M. Gehrke and T. Rung, “Scale-resolving turbulent channel flow simulations using a dynamic cumulant lattice Boltzmann method,” Phys. Fluids 34(7), 75129 (2022).https://doi.org/10.1063/5.0098032 31.T. Ishida, “Lattice Boltzmann method for aeroacoustic simulations with block-structured Cartesian grid,” AIAA Paper No. 2016-0259, 2016. 32.T. Ishida, “Aerodynamic simulations of a high-lift configuration by lattice Boltzmann method with block-structured Cartesian grid,” AIAA Paper No. 2019-2306, 2019. 33.N. Nishimura, K. Hayashi, S. Nakaye, M. Yoshimoto, K. Suga, and T. Inamuro, “Implicit large-eddy simulation of rotating and non-rotating machinery with cumulant lattice Boltzmann method aiming for industrial applications,” AIAA Paper No. 2019-3526, 2019. 34.W. Liang, P. Liu, J. Zhang, S. Yang, and Q. Qu, “A mathematical interpolation bounce back wall modeled lattice Boltzmann method based on hierarchical Cartesian mesh applied to 30P30N airfoil aeroacoustics simulation,” Comput. Math. Appl. 158, 21–35 (2024).https://doi.org/10.1016/j.camwa.2024.01.008 35.C. Lyu, P. Liu, T. Hu, X. Geng, Q. Qu, T. Sum, and R. Akkermans, “Hybrid method for wall local refinement in lattice Boltzmann method simulation,” Phys. Fluids 35, 017103 (2023).https://doi.org/10.1063/5.0130467 36.H. Asmuth, C. F. Janssen, H. Olivares-Espinosa, and S. Ivanell, “Wall-modeled lattice Boltzmann large-eddy simulation of neutral atmospheric boundary layers,” Phys. Fluids 33, 75129 (2021).https://doi.org/10.1063/5.0065701 37.H. Chen, C. Teixeira, and K. Molvig, “Realization of fluid boundary conditions via discrete Boltzmann dynamics,” Int. J. Mod. Phys. C 9(8), 1281–1292 (1998).https://doi.org/10.1142/S0129183198001151 38.C. M. Teixeira, “Incorporating turbulence models into the lattice-Boltzmann method,” Int. J. Mod. Phys. C 9(8), 1159–1175 (1998).https://doi.org/10.1142/S0129183198001060 39.Y. Li, “An improved volumetric LBM boundary approach and its extension for sliding mesh simulation,” Ph.D. thesis (Iowa State University, 2012). 40.R. Lietz, S. Mallick, S. Kandasamy, and H. Chen, “Exterior airflow simulations using a lattice Boltzmann approach,” SAE Technical Paper No. 2002-01-0596, 2002. 41.B. König, E. Fares, S. Nölting, A. Jammadamalaka, and B. Li, “Investigation of the NACA4412 trailing edge separation using a lattice Boltzmann approach,” AIAA Paper No. 2014-3324, 2014. 42.B. Duda and E. Fares, “Predicting flow separation on the axisymmetric transonic bump with a lattice-Boltzmann method,” AIAA Paper No. 2019-1835, 2019. 43.B. Duda and E. Fares, “Application of a lattice-Boltzmann method to the separated flow behind the NASA hump,” AIAA Paper No. 2016-1836, 2016. 44.B. Duda and G. M. Laskowski, “Lattice Boltzmann very large eddy simulations of the NASA juncture flow model,” AIAA Paper No. 2020-1778, 2020. 45.X. Xue, S. Wang, H.-D. Yao, L. Davidson, and P. V. Coveney, “Physics informed data-driven near-wall modelling for lattice Boltzmann simulation of high Reynolds number turbulent flows,” Commun. Phys. 7(1), 338 (2024).https://doi.org/10.1038/s42005-024-01832-1 46.G. Spinelli, J. Gericke, K. Masilamani, and G. Klimach, “Key ingredients for wall-modeled LES with the lattice Boltzmann method: Systematic comparison of collision schemes, SGS modeled, and wall functions on simulation accuracy and efficiency for turbulent channel flow,” DCDS-S 17(11), 3224–3251 (2024).https://doi.org/10.3934/dcdss.2023212 47.A. de Rosis, R. Huang, and C. Coreixas, “Universal formulation of central moments based method with external forcing for simulation of multiphysics phenomena,” Phys. Fluids 31, 117102 (2019).https://doi.org/10.1063/1.5124719 48.S. Saito, A. D. Rosis, L. Fei, K. H. Luo, K. Ebihara, A. Kaneko, and Y. Abe, “Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder,” Phys. Fluids 33, 0233037 (2021).https://doi.org/10.1063/50032743 49.L. Fei and K. H. Luo, “Consistent forcing scheme in the cascaded lattice Boltzmann method,” Phys. Rev. E 96(5), 053307 (2017).https://doi.org/10.1103/PhysRevE.96.053307 50.M. Aftosmis, “Solution adaptive Cartesian grid methods for aerodynamic flows with complex geometries,” in Lecture Notes for the 28th Computational Fluid Dynamics, Lecture Series 1997-02, 3–7 March (von Karman Institute for Fluid Dynamics, 1997). 51.M. Rhode, D. Kandhai, D. J. J, and H. A. van den Akker, “A generic, mass conservative local grid refinement technique for lattice-Boltzmann schemes,” Int. J. Numer. Methods Fluids 51(4), 439–468 (2006).https://doi.org/10.1002/fld.1140 52.A. Schukmann, A. Schneider, V. Hass, and M. Böhle, “Analysis of hierarchical grid refinement techniques for the lattice Boltzmann method by numerical experiments,” Fluids 8(3), 103 (2023).https://doi.org/10.3390/fluids8030103 53.F. Schornbaum and U. Rude, “Massively parallel algorithms for the lattice Boltzmann method on non-uniform grids,” SIAM J. Sci. Comput. 38(2), C96–C126 (2016).https://doi.org/10.1137/15M1035240 54.H. Chen, O. Filippova, J. Hoch, K. Molvig, R. Shock, C. Teixeira, and R. Zhang, “Grid Refinement in lattice Boltzmann methods based on volumetric formulation,” Physica A 362(1), 158–167 (2006).https://doi.org/10.1016/j.physa.2005.09.036 55.P. R. Spalart and S. R. Allmaras, “A one-equation turbulence model for aerodynamic flows,” Rech. Aerosp. 1, 5–21 (1994). 56.S. Allmaras, F. Johnson, and P. Spalart, “Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model,” in Proceedings of the Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, HI, 9–13 July, 2012, Paper No. ICCFD7-1902. 57.NASA Langley, see https://turbmodels.larc.nasa.gov/ for “Turbulence Modeling Resource” (accessed 20 May 2024). 58.D. J. Mavriplis, “Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes,” AIAA Paper No. 2003-3986, 2003. 59.M. Berger and M. Aftosmis, “An ODE-based wall model for turbulent flow simulations,” AIAA J. 56(2), 700–714 (2018).https://doi.org/10.2514/1.J056151 60.F. Capizzano, “Turbulent wall model for immersed boundary methods,” AIAA J. 49(11), 2367–2381 (2011).https://doi.org/10.2514/1.J050466 61.D. Yu, R. Mei, and W. Shyy, “A unified boundary treatment in Lattice Boltzmann method,” AIAA Paper No. 2003-0953, 2003. 62.See https://www.aiaa-dpw.org/Workshop6/workshop6.html for “6th AIAA CFD Drag Prediction Workshop” (2016). 63.Q. Zhou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids 9, 1591–1598 (1997).https://doi.org/10.1063/1.869307 64.D. Yu, “Improved treatment of the open boundary in the method of lattice Boltzmann equation,” Prog. Comput. Fluid Dyn. 5, 3–12 (2005).https://doi.org/10.1504/PCFD.2005.005812 65.M. Berger and M. Aftosmis, “Progress towards a Cartesian cut-cell method for viscous compressible flow,” AIAA Paper No. 2012-1301, 2012. 66.C. Brehm, O. Browne, and N. Ashton, “Towards a viscous wall model for immersed boundary methods,” AIAA Paper No. 2018-1560, 2018. 67.Y. Tamaki, M. Harada, and T. Inamura, “Near-wall modification of Spalart-Allmaras turbulence model for immersed boundary method,” AIAA J. 55(9), 3027 (2017).https://doi.org/10.2514/1.J055824 68.C. J. Roy and E. Tinoco, “Summary of data from the sixth AIAA CFD drag prediction workshop: Case 1 code verification,” AIAA Paper No. 2017-1206, 2017. 69.B. J. Cantwell, E. Bilgin, and J. Needels, “On new boundary integral method based on the universal profile,” Phys. Fluids 34, 075130 (2022).https://doi.org/10.1063/5.0100367 70.V. Chin, D. Peters, F. W. Spaid, and R. McGhee, “Flow field measurements about a multi-element airfoil at high Reynolds number,” AIAA Paper No. 93-3137, 1993. 71.See https://hiliftpw.larc.nasa.gov/index-workshop4.html for “4th AIAA CFD High Lift Prediction Workshop (HLPW-4).” 72.W. K. Anderson, D. L. Bonhaus, R. J. McGhee, and B. S. Walker, “Navier-Stokes computations and experimental comparisons for multielement airfoil configurations,” J. Aircr. 32(6), 1246–1253 (1995).https://doi.org/10.2514/3.46871 73.S. Klausmeyer and J. Lin, “Comparative results from a CFD challenge over a 2D three-element high-lift airfoil,” Report No. NASA-TM-112858, 1997. 74.P. Iyer, L. Wang, C. L. Rumsey, W. Anderson, and P. Balakumar, “Evaluation of wall-modeled LES for flow over a multi-element airfoil,” AIAA Paper No. 2024-4173, 2024. 75.N. Hildebrand, F. Li, and M. Choudhari, “Transition prediction for the 30P30N airfoil and the CRM-HL using FUN3D,” AIAA Paper No. 2025-1644, 2025. 76.L. Wang, W. K. Anderson, E. J. Nielsen, P. S. Iyer, and B. Diskin, “Wall-modeled large-eddy simulation method for unstructured-grid Navier–Stokes solvers,” J. Aircr. 61(6), 1735–1760 (2024).https://doi.org/10.2514/1.C037847 77.M. Murayama, Y. Yokokawa, H. Ura, K. Nakakita, K. Yamamoto, Y. Ito, T. Takeshi, K. Sakai, K. Shimada, T. Kato, and R. Homma, “Experimental study on slat noise from 30P30N three-element high-lift airfoil in JAXA Kevlar-wall low-speed wind tunnel,” AIAA Paper No. 2018-3460, 2018. 78.B. Duda, E. Fares, R. Kotapati, Y. I. Li, R. Zhang, and H. Chen, “Capturing laminar to turbulent transition within the LBM based CFD solver PowerFLOW,” AIAA Paper No. 2019-1832, 2019. 79.R. Satti, Y. Li, R. Shock, and S. Noelting, “Unsteady flow analysis of a multi-element airfoil using lattice-Boltzmann method,” AIAA J. 50(9), 1805 (2012).https://doi.org/10.2514/1.J050906 80.C. Coreixas and J. Latt, “GPU-based compressible lattice Boltzmann simulations on non-uniform grids using standard C++ parallelism: From best practices to aerodynamics aeroacoustics and supersonic flow simulations,” Comput. Phys. Commun. 317, 109833 (2025).https://doi.org/10.1016/j.cpc.2025.109833 81.C. Rumsey, T. B. Gatski, S. X. Ying, and A. Belterud, “Prediction of high-lift flows using turbulent closure models,” AIAA J. 36(5), 765–774 (1998).https://doi.org/10.2514/2.435 82.C. Rumsey, E. Lee-Raussch, and R. Watson, “Three-dimensional effects in multi-element high lift computations,” Comput. Fluids 32(5), 631–657 (2003).https://doi.org/10.1016/S0045-7930(02)00032-4
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.license© 2026 Author(s). Published under an exclusive license by AIP Publishing.
dc.titleEnhanced wall-boundary modeling for turbulent flows using the lattice Boltzmann method with adaptive Cartesian grids
dc.typeinfo:eu-repo/semantics/article
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication00e9bdb2-bd87-4ea8-aed7-97eb2edee279
relation.isAuthorOfPublication9b86fa55-f3b0-4416-9775-e52d87cb311a
relation.isAuthorOfPublication.latestForDiscovery00e9bdb2-bd87-4ea8-aed7-97eb2edee279

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Enhanced wall boundary modeling for turbulent flows using the lattice Boltzmann method with adaptive cartesian grids.pdf
Tamaño:
33.01 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
4.77 KB
Formato:
Item-specific license agreed upon to submission
Descripción: