Publicación:
Development and Qualification of New Solid Lubricant Coatings. A Tribology Experiment at the Tribolab onto EUTEF

Proyectos de investigación

Unidades organizativas

Número de la revista

Resumen

A recent study has identified that a significant number of satellite failures and anomalies, including those caused during qualification testing of mechanisms, were caused by lubrication related problems. Solid lubrication is, owing to lower vapour pressures, better boundary lubrication properties, relative insensitivity to radiation effects and wider temperature range of operation, still a preferred option for a number of space mechanisms. However, actual solid lubricants wear out and do not provide effective protection for long life mechanisms. A longer life and reduced wear debris is desirable to improve mechanism reliability. The present work reports on early results on the development of a new generation of solid lubricant coatings by the use of state of the art magnetron sputtering technology and thermal spraying processes. These coatings after a proper qualification procedure under laboratory ground conditions will be finally tested at the TriboLAB instrument that will be integrated onto the EuTEF facility at the International Space Station (ISS). Metal alloyed MoS2 solid lubricant films have been produced by a magnetron sputtering PVD process. Tribotests carried out under vacuum in a ball-on-disc tribometer with MoS2 coated AISI 440C steel discs have shown very low friction coefficients of 0.01 and long endurance, in excess of 300,000 revolutions at about a max. 0.8 GPa contact stress. These films also exhibited low friction coefficients (about 0.10) and good durability under atmospheric conditions at RT and up to 50 to 60 % RH. The thick composite lubricant coatings consisting of AlCoFeCr, NiCr, Ag and BaF2-CaF2 were deposited by plasma spray and HVOF on X-750 Ni-base superalloy. These coatings have been characterised by EDS-SEM as well as hardness measurements. The best coatings from preliminary experiments have been produced by HVOF process; these show very low porosity, a more uniform phase distribution and hardness levels of 635 HV0.2. Anticipated high temperature applications of former coatings might include elevon hinges for re-usable space planes.

Descripción

Palabras clave

New solid lubricant coatings, Tribology

Citación

Proc. of 8th Int. Symp. on “Mat. in a Space Environment