Logotipo del repositorio
Comunidades
Todo Digital INTA
Iniciar sesión
¿Nuevo Usuario? Pulse aquí para registrarse ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Laguna, H."

Seleccione resultados tecleando las primeras letras
Mostrando 1 - 4 de 4
  • Resultados por página
  • Opciones de ordenación
  • Cargando...
    Miniatura
    PublicaciónRestringido
    Fiber Bragg gratings for optical sensing (FIBOS) for an aerospace application
    (SPIE Optical Engineering Applications, 2010-09-09) López Heredero, Raquel; Frövel, Malte; Laguna, H.; Anderson, A.; Garranzo García, D.; Belenguer Dávila, T.; Frövel, M. [0000-0001-9447-4036]; López Heredero, R. [0000-0002-2197-8388]
    FIBOS, as one of the payloads of a picosatellite called OPTOS, will be used to measure temperature during the mission with Fiber Bragg Gratings. Description and calibration of FIBOS are presented.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    In-orbit demonstration of fiber optic sensors based on Bragg gratings
    (International Conference on Space Optics, 2019-07-12) López Heredero, Raquel; Frövel, Malte; Laguna, H.; Belenguer Dávila, T.; Instituto Nacional de Técnica Aeroespacial (INTA); López Heredero, R. [0000000221978388]; Frövel, M. [00000000194474036]
    FIBOS (FIber Bragg gratings for Optical Sensing) is one payload used to monitor temperature and strain during a nanosatellite mission. Description of the payload and in-orbit results are presented. Fiber Bragg Grating (FBG) sensors offer attractive and robust solutions for temperature and pressure monitoring in a spacecraft. Moreover, they can be embedded in composite structures or attached on their surface for structural health monitoring during the entire life cycle of a satellite, from integration and qualification tests, to final operation. FIBOS contains two FBGs to measure temperature and strain during one space mission called OPTOS. The mission, developed by INTA (Instituto Nacional de Técnica Aeroespacial), was a low-cost nanosatellite based on a triple configuration (3U) of the popular Cubesat standard. OPTOS was launched in November 2013 and was operative during two years. Its main goal was to validate and demonstrate the suitability of novel technologies for space applications inside a miniaturized area with big restrictions in terms of mass and power consumption. This work describes the payload components. FIBOS contains commercial off-the-shelf (COTS) parts like a monolithic tunable laser and a conventional InGaAs pigtailed photodiode. The optical sensor head includes two FBGs mounted onto a steel mechanical structure to monitor temperature and strain. Results of the mission are presented. Measurements performed during the operation in-orbit show good agreement with calibration data performed on earth inside a thermalvacuum chamber (TVC). This paper shows a demonstration of a fiber optic sensor based on FBGs in space environment.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory
    (Springer Link, 2011-01-17) Martínez Pillet, V.; Del Toro Iniesta, J. C.; Álvarez Herrero, A.; Domingo, V.; Bonet Navarro, J. A.; González Fernández, C.; López Jiménez, A. C.; Pastor, C.; Gasent Blesa, J. L.; Mellado, P.; Piqueras, J.; Aparicio, B.; Balaguer, M.; Ballesteros, E.; Belenguer Dávila, T.; Bellot Rubio, L. R.; Berkefeld, T.; Collados Vera, Manuel; Deutsch, W.; Feller, A.; Girela, F.; Grauf, B.; López Heredero, Raquel; Herranz, M.; Jerónimo, J. M.; Laguna, H.; Meller, R.; Menéndez, M.; Morales, R.; Orozco Suárez, D.; Ramos, G.; Reina, M.; Ramos, J. L.; Rodríguez, P.; Sánchez, A.; Uribe Patarroyo, N.; Barthol, P.; Gandorfer, A.; Knoelker, M.; Schmidt, Walter; Solanki, S. K.; Vargas Domínguez, S.; Ministerio de Ciencia e Innovación (MICINN); Deutsches Zentrum für Luft- und Raumfahrt (DLR); National Aeronautics and Space Administration (NASA); López Heredero, R. [0000-0002-2197-8388]; López Jiménez, A. [0000-0002-6297-0681]; Balaguer, M. [0000-0003-4738-7727]; Del Toro Iniesta, J. C. [0000-0002-3387-026X]; Reina Aranda, M. [0000-0003-0248-2771]; Álvarez Herrero, A. [0000-0001-9228-3412]; Herranz de la Revilla, M. L. [0000-0003-4343-6632]; Morales Muñoz, R. [0000-0003-1661-0594]; Pastor, C. [0000-0001-9631-9558]; Gasent Blesa, J. L. [0000-0002-1225-4177]; Collados, M. [0000-0002-6210-9648]; Jerónimo, J. M. [0000-0002-4944-5823]; Bellot Rubio, L. R. [0000-0001-8669-8857]; Martínez Pillet, V. [0000-0001-7764-6895]
    The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne solar observatory in June 2009 for almost six days over the Arctic Circle. As a polarimeter, IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual-beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mÅ. IMaX uses the high-Zeeman-sensitive line of Fe I at 5250.2 Å and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15 – 0.18 arcsec range over a 50×50 arcsec field of view. Time cadences vary between 10 and 33 s, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are 4 G for longitudinal fields and 80 G for transverse fields per wavelength sample. The line-of-sight velocities are estimated with statistical errors of the order of 5 – 40 m s−1. The design, calibration, and integration phases of the instrument, together with the implemented data reduction scheme, are described in some detail.
  • Cargando...
    Miniatura
    PublicaciónAcceso Abierto
    The Polarimetric and Helioseismic Imager on Solar Orbiter
    (EDP Sciences, 2020-10) Solanki, S. K.; Álvarez Herrero, A.; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero Vidriales, Maria; Dávila, B.; Fernández Medina, A.; García Parejo, P.; Garranzo García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Nuñez Peral, A.; Royo, M.; Sánchez, A.; Silva López, M.; Vera Trallero, Isabel; Villanueva, J.; Zouganelis, I.; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Centre National D'Etudes Spatiales (CNES); Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709
    This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe※ I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit.
footer.link.logos.derechosLogo Acceso abiertoLogo PublicacionesLogo Autores
Logo Sherpa/RomeoLogo DulcineaLogo Creative CommonsLogo RecolectaLogo Open AireLogo Hispana

Dspace - © 2024

  • Política de cookies
  • Política de privacidad
  • Aviso Legal
  • Accesibilidad
  • Sugerencias