Examinando por Autor "Franchi, Fulvio"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Acceso Abierto Turbulence statistics of terrestrial Mars-analog and Martian dust devils(EGU General Assembly, 2025-01-16) Karatekin, Özgür; Apéstigue, Víctor; Toledo, D.; Arruego, Ignacio; Franchi, Fulvio; Martínez, Germán M.; Berk Senel, CemConvective instabilities in the lowermost part of the atmosphere, so called the planetary boundary layer, can lead to the formation of convective vortices and form dust devils both on Earth and Mars. We performed mesoscale simulations for a Mars-analog terrestrial site, Makgadikgadi Pan - Botswana [1,2], where a state-of-the art field campaign was conducted to investigate the terrestrial dust devils, and the InSight landing site [3] using WRF/MarsWRF models [4,5]. We then combined our atmospheric modeling with in-situ observations of wind and pressure to perform a comparative boundary-layer meteorology study. We focused on the length and time of scales of turbulence and investigated the turbulent spectrum.Publicación Acceso Abierto Using the Perseverance MEDA-RDS to identify and track dust devils and dust-lifting gust fronts(Frontiers, 2023-10-11) Toledo, D.; Apéstigue, Víctor; Martínez Oter, J.; Franchi, Fulvio; Serrano, F.; Yela González, Margarita; De la Torre Juárez, M.; Rodríguez Manfredi, J. A.; Arruego, Ignacio; European Commission (EC); Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO)In the framework of the Europlanet 2024 Research Infrastructure Transnational Access programme, a terrestrial field campaign was conducted from 29 September to 6 October 2021 in Makgadikgadi Salt Pans (Botswana). The main goal of the campaign was to study in situ the impact of the dust devils (DDs) on the observations made by the radiometer Radiation and Dust Sensor (RDS), which is part of the Mars Environmental Dynamics Analyzer instrument, on board NASA’s Mars 2020 Perseverance rover. Several DDs and dust lifting events caused by non-vortex wind gusts were detected using the RDS, and the different impacts of these events were analyzed in the observations. DD diameter, advection velocity, and trajectory were derived from the RDS observations, and then, panoramic videos of such events were used to validate these results. The instrument signal variations produced by dust lifting (by vortices or wind gusts) in Makgadikgadi Pans are similar to those observed on Mars with the RDS, showing the potential of this location as a Martian DD analog.










