Examinando por Autor "Lillo Box, J."
Mostrando 1 - 20 de 23
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113(Oxford Academics: Oxford University Press, 2021-01-25) Osborn, Hugh P.; Armstrong, D. J.; Adibekyan, V.; Collins, K. A.; Delgado Mena, E.; Howell, Steve B.; Hellier, C.; King, G. W.; Lillo Box, J.; Nielsen, L. D.; Otegi, Jon F.; Santos, Nuno C.; Ziegler, C.; Anderson, D. R.; Briceño, C.; Burke, C. J.; Bayliss, D.; Barrado, D.; Bryant, E. M.; Brown, D. J. A.; Barros, S. C. C.; Bouchy, F.; Caldwell, D. A.; Conti, D.; Díaz, R. F.; Dragomir, D.; Deleuil, M.; Demangeon, O. D. S.; Dorn, C.; Daylan, T.; Figueira, P.; Helled, R.; Hoyer, S.; Jenkins, J. S.; Jensen, E. L. N.; Latham, D. W.; Law, N.; Louie, D.; Mann, A. W.; Osborn, A.; Pollacco, D.; Rodríguez, D. R.; Rackham, B. V.; Ricker, George; Scott, N. J.; Sousa, S. G.; Seager, S.; Stassun, K. G.; Smith, J. C.; Strom, P.; Udry, S.; Villaseñor, J. N.; Vanderspek, R.; West, R.; Wheatley, Peter; Winn, J. N.; Fundacao para a Ciencia e a Tecnologia (FCT); Science and Technology Facilities Council (STFC); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); UK Space Agency; Dorn, C. [0000-0001-6110-4610]; Anderson, D. [0000-0001-7416-7522]; Barros, S. [0000-0003-2434-3625]; Adibekyan, V. [0000-0002-0601-6199]; Armstrong, D. [0000-0002-5080-4117]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We report the discovery of HD 110113 b (TESS object of interest-755.01), a transiting mini-Neptune exoplanet on a 2.5-d orbit around the solar-analogue HD 110113 (Teff = 5730 K). Using TESS photometry and High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities gathered by the NCORES program, we find that HD 110113 b has a radius of 2.05 ± 0.12 R⊕ and a mass of 4.55 ± 0.62 M⊕. The resulting density of 2.90+0.75−0.59 g cm−3 is significantly lower than would be expected from a pure-rock world; therefore HD 110113 b must be a mini-Neptune with a significant volatile atmosphere. The high incident flux places it within the so-called radius valley; however, HD 110113 b was able to hold on to a substantial (0.1–1 per cent) H–He atmosphere over its ∼4 Gyr lifetime. Through a novel simultaneous Gaussian process fit to multiple activity indicators, we were also able to fit for the strong stellar rotation signal with period 20.8 ± 1.2 d from the RVs and confirm an additional non-transiting planet, HD 110113 c, which has a mass of 10.5 ± 1.2 M⊕ and a period of 6.744+0.008−0.009 d.Publicación Acceso Abierto A precise architecture characterization of the π Mensae planetary system(EDP Sciences, 2020-10-01) Damasso, D.; Sozzetti, A.; Lovis, C.; Barros, S. C. C.; Sousa, S. G.; Demangeon, O. D. S.; Faria, J. P.; Lillo Box, J.; Cristiani, S.; Pepe, Francesco; Rebolo, R.; Santos, Nuno C.; Zapatero Osorio, M. R.; González Hernández, J. I.; Amate, M.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Benz, W.; Bianco, A.; Borsa, F.; Bossini, D.; Bourrier, V.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Dekker, H.; Delabre, B.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lizon, Jean Louis; Lo Curto, G.; Maire, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Murphy, M. T.; Nunes, Nelson J.; Oggioni, L.; Oliveira, António; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Riva, M.; Santa Tschudi, S.; Santin, P.; Santos, Pedro; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H. M.; Tenegi, F.; Udry, S.; Zanutta, A.; Swiss National Science Foundation (SNSF); Agenzia Spaziale Italiana (ASI); Fundação para a Ciência e a Tecnologia (FCT); Australian Research Council (ARC); Istituto Nazionale Astrofisica (INAF); 0000-0003-0987-1593; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The bright star pi Men was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory's Very Large Telescope. The star hosts a multi-planet system (a transiting 4 M-circle plus planet at similar to 0.07 au and a sub-stellar companion on a similar to 2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization. Aims. With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits of pi Men c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign. Methods. We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOS and Gaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters. Results. We present a precise characterization of the planetary system around pi Men. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s(-1)) allow for a precise retrieval of the Doppler signal induced by pi Men c. The residuals show a root mean square of 1.2 m s(-1), which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than similar to 2 M-circle plus within the orbit of pi Men c). We improve the ephemeris of pi Men c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane of pi Men b with high precision (i(b) =45.8(-1.1)(+1.4) deg). This leads to precise measurement of its absolute mass m(b) = =14.1(-0.4)(+0.5) M-Jup, indicating that pi Men b can be classified as a brown dwarf. Conclusions. The pi Men system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of the pi Men planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass of pi Men b contributes to make the brown dwarf desert a bit greener.Publicación Restringido A remnant planetary core in the hot-Neptune desert(Springer Nature Research Journals, 2020-07-01) Armstrong, D. J.; López, Théo A.; Adibekyan, V.; Booth, R. A.; Bryant, E. M.; Collins, K. A.; Deleuil, M.; Emsenhuber, A.; Huang, C. X.; King, G. W.; Lillo Box, J.; Lissauer, J. J.; Matthews, E.; Mousis, O.; Nielsen, L. D.; Osborn, Hugh P.; Otegi, Jon F.; Santos, Nuno C.; Sousa, S. G.; Stassun, K. G.; Veras, D.; Ziegler, C.; Acton, J. S.; Almenara, J. M.; Anderson, D. R.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Belardi, C.; Bouchy, F.; Briceño, C.; Brogi, M.; Brown, D. J. A.; Burleigh, M. R.; Casewell, S. L.; Chausev, A.; Ciardi, D. R.; Collins, K. I.; Colón, K. D.; Cooke, B. F.; Crossfield, J. M.; Díaz, R. F.; Delgado Mena, E.; Gandhi, O. D. S.; Gill, Samuel; Gonzales, E. J.; Goad, M. R.; Günther, M. N.; Helled, R.; Hojjatpanah, S.; Howell, Steve B.; Jackman, J.; Jenkins, J. S.; Jenkins, J. M.; Jensen, E. L. N.; Kennedy, G. M.; Latham, D. W.; Law, N.; Osborn, M.; Pollacco, D.; Queloz, D.; Raynard, L.; Ricker, George; Rowden, P.; Santerne, A.; Schlieder, Joshua; Seager, S.; Sha, L.; Tan, T. G.; Tilbrook, R. H.; Ting, E.; Udry, S.; Vanderspek, R.; Watson, C. A.; West, R. G.; Wilson, P. A.; Winn, J. N.; Wheatley, P.; Villaseñor, J. N.; Vines, J. I.; Zhan, Z.; National Aeronautics and Space Administration (NASA); Fundação para a Ciência e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Science and Technology Facilities Council (STFC); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Collins, K. A. [0000-0002-4317-142X]; Lillo Box, J. [0000-0003-3742-1987]; Matthews, E. [0000-0003-0593-1560]; Sousa, S. [0000-0002-3631-6440]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The interiors of giant planets remain poorly understood. Even for the planets in the Solar System, difficulties in observation lead to large uncertainties in the properties of planetary cores. Exoplanets that have undergone rare evolutionary processes provide a route to understanding planetary interiors. Planets found in and near the typically barren hot-Neptune 'desert'(1,2)(a region in mass-radius space that contains few planets) have proved to be particularly valuable in this regard. These planets include HD149026b(3), which is thought to have an unusually massive core, and recent discoveries such as LTT9779b(4)and NGTS-4b(5), on which photoevaporation has removed a substantial part of their outer atmospheres. Here we report observations of the planet TOI-849b, which has a radius smaller than Neptune's but an anomalously large mass of39.1-2.6+2.7Earth masses and a density of5.2-0.8+0.7grams per cubic centimetre, similar to Earth's. Interior-structure models suggest that any gaseous envelope of pure hydrogen and helium consists of no more than3.9-0.9+0.8 per cent of the total planetary mass. The planet could have been a gas giant before undergoing extreme mass loss via thermal self-disruption or giant planet collisions, or it could have avoided substantial gas accretion, perhaps through gap opening or late formation(6). Although photoevaporation rates cannot account for the mass loss required to reduce a Jupiter-like gas giant, they can remove a small (a few Earth masses) hydrogen and helium envelope on timescales of several billion years, implying that any remaining atmosphere on TOI-849b is likely to be enriched by water or other volatiles from the planetary interior. We conclude that TOI-849b is the remnant core of a giant planet.Publicación Acceso Abierto A sub-Neptune and a non-transiting Neptune-mass companion unveiled by ESPRESSO around the bright late-F dwarf HD 5278 (TOI-130)(EDP Sciences, 2021-04-14) Sozzetti, A.; Damasso, M.; Bonomo, A. S.; Alibert, Y.; Sousa, S. G.; Adibekyan, V.; Zapatero Osorio, M. R.; González Hernández, J. I.; Barros, S. C. C.; Lillo Box, J.; Stassun, K. G.; Winn, J. N.; Cristiani, S.; Pepe, Francesco; Rebolo, R.; Santos, Nuno C.; Allart, R.; Barclay, T.; Bouchy, F.; Cabral, A.; Ciardi, D. R.; Di Marcantonio, P.; D´Odorico, V.; Ehrenreich, D.; Fausnaugh, M.; Figueira, P.; Haldemann, J.; Jenkins, J. M.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, Nelson J.; Oshagh, M.; Otegi, Jon F.; Pallé, E.; Poretti, E.; Ricker, George; Rodríguez, D.; Seager, S.; Suárez Mascareño, A.; Twicken, J. D.; Udry, S.; Istituto Nazionale di Astrofisica (INAF); Agenzia Spaziale Italiana (ASI); iss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Commission (EC); European Research Council (ERC); Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI) http://dx.doi.org/10.13039/501100011033; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Haldemann, J. [0000-0003-1231-2389]Context. Transiting sub-Neptune-type planets, with radii approximately between 2 and 4 R⊕, are of particular interest as their study allows us to gain insight into the formation and evolution of a class of planets that are not found in our Solar System. Aims. We exploit the extreme radial velocity (RV) precision of the ultra-stable echelle spectrograph ESPRESSO on the VLT to unveil the physical properties of the transiting sub-Neptune TOI-130 b, uncovered by the TESS mission orbiting the nearby, bright, late F-type star HD 5278 (TOI-130) with a period of Pb = 14.3 days. Methods. We used 43 ESPRESSO high-resolution spectra and broad-band photometry information to derive accurate stellar atmospheric and physical parameters of HD 5278. We exploited the TESS light curve and spectroscopic diagnostics to gauge the impact of stellar activity on the ESPRESSO RVs. We performed separate as well as joint analyses of the TESS photometry and the ESPRESSO RVs using fully Bayesian frameworks to determine the system parameters. Results. Based on the ESPRESSO spectra, the updated stellar parameters of HD 5278 are Teff = 6203 ± 64 K, log g = 4.50 ± 0.11 dex, [Fe/H] = −0.12 ± 0.04 dex, M⋆ = 1.126−0.035+0.036 M⊙, and R⋆ = 1.194−0.016+0.017 R⊙. We determine HD 5278 b’s mass and radius to be Mb = 7.8−1.4+1.5 M⊕ and Rb = 2.45 ± 0.05R⊕. The derived mean density, ϱb = 2.9−0.5+0.6 g cm−3, is consistent with the bulk composition of a sub-Neptune with a substantial (~ 30%) water mass fraction and with a gas envelope comprising ~17% of the measured radius. Given the host brightness and irradiation levels, HD 5278 b is one of the best targetsorbiting G-F primaries for follow-up atmospheric characterization measurements with HST and JWST. We discover a second, non-transiting companion in the system, with a period of Pc = 40.87−0.17+0.18 days and a minimum mass of Mc sin ic = 18.4−1.9+1.8 M⊕. We study emerging trends in parameters space (e.g., mass, radius, stellar insolation, and mean density) of the growing population of transiting sub-Neptunes, and provide statistical evidence for a low occurrence of close-in, 10 − 15M⊕ companions around G-F primaries with Teff ≳ 5500 K.Publicación Acceso Abierto Atmospheric Rossiter–McLaughlin effect and transmission spectroscopy of WASP-121b with ESPRESSO(EDP Sciences, 2021-01-22) Borsa, F.; Allart, R.; Casasayas Barris, N.; Tabernero, H. M.; Zapatero Osorio, M. R.; Cristiani, S.; Pepe, Francesco; Rebolo, R.; Santos, Nuno C.; Adibekyan, V.; Bourrier, V.; Demangeon, O. D. S.; Ehrenreich, D.; Pallé, E.; Sousa, S. G.; Lillo Box, J.; Lovis, C.; Micela, G.; Oshagh, M.; Poretti, E.; Sozzetti, A.; Allende Prieto, C.; Alibert, Y.; Amate, M.; Benz, W.; Bouchy, F.; Cabral, A.; Dekker, H.; D´Odorico, V.; Di Marcantonio, P.; Figueira, P.; Genova Santos, R.; González Hernández, J. I.; Lo Curto, G.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Molaro, P.; Nunes, Nelson J.; Riva, M.; Suárez Mascareño, A.; Udry, S.; Zerbi, Filippo M.; Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Cabral, A. [0000-0002-9433-871X]; Adibekyan, V. [0000-0002-0601-6199]; Santos, N. [0000-0003-4422-2919]; Nunes, N. [0000-0002-3837-6914]; Sozzetti, A. [0000-0002-7504-365X]; Suarez Mascareño, A. [0000-0002-3814-5323]Context. Ultra-hot Jupiters are excellent laboratories for the study of exoplanetary atmospheres. WASP-121b is one of the most studied; many recent analyses of its atmosphere report interesting features at different wavelength ranges. Aims. In this paper we analyze one transit of WASP-121b acquired with the high-resolution spectrograph ESPRESSO at VLT in one-telescope mode, and one partial transit taken during the commissioning of the instrument in four-telescope mode. Methods. We take advantage of the very high S/N data and of the extreme stability of the spectrograph to investigate the anomalous in-transit radial velocity curve and study the transmission spectrum of the planet. We pay particular attention to the removal of instrumental effects, and stellar and telluric contamination. The transmission spectrum is investigated through single-line absorption and cross-correlation with theoretical model templates. Results. By analyzing the in-transit radial velocities we were able to infer the presence of the atmospheric Rossiter–McLaughlin effect. We measured the height of the planetary atmospheric layer that correlates with the stellar mask (mainly Fe) to be 1.052 ± 0.015 Rp and we also confirmed the blueshift of the planetary atmosphere. By examining the planetary absorption signal on the stellar cross-correlation functions we confirmed the presence of a temporal variation of its blueshift during transit, which could be investigated spectrum-by-spectrum thanks to the quality of our ESPRESSO data. We detected significant absorption in the transmission spectrum for Na, H, K, Li, Ca II, and Mg, and we certified their planetary nature by using the 2D tomographic technique. Particularly remarkable is the detection of Li, with a line contrast of ~0.2% detected at the 6σ level. With the cross-correlation technique we confirmed the presence of Fe I, Fe II, Cr I, and V I. Hα and Ca II are present up to very high altitudes in the atmosphere (~1.44 Rp and ~2 Rp, respectively), and also extend beyond the transit-equivalent Roche lobe radius of the planet. These layers of the atmosphere have a large line broadening that is not compatible with being caused by the tidally locked rotation of the planet alone, and could arise from vertical winds or high-altitude jets in the evaporating atmosphere.Publicación Acceso Abierto Characterization of the K2-38 planetary system Unraveling one of the densest planets known to date(EDP Sciences, 2020-09-14) Toledo Padrón, B.; Lovis, C.; Suárez Mascareño, A.; Barros, S. C. C.; González Hernández, J. I.; Sozzetti, A.; Bouchy, F.; Zapatero Osorio, M. R.; Rebolo, R.; Cristiani, S.; Pepe, Francesco; Santos, Nuno C.; Sousa, S. G.; Tabernero, H. M.; Lillo Box, J.; Bossini, D.; Adibekyan, V.; Allart, R.; Damasso, M.; D´Odorico, V.; Figueira, P.; Lavie, B.; Lo Curto, G.; Mehner, A.; Micela, G.; Modigliani, A.; Nunes, Nelson J.; Pallé, E.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandy, T.; Benatti, S.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; Deiries, S.; Dekker, H.; Delabre, B.; Demangeon, O. D. S.; Di Marcantonio, P.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Knudstrup, J.; Landoni, M.; Lizon, Jean Louis; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Molaro, P.; Monteiro, M. J. P. F. G.; Monteiro, M. A.; Moschetti, M.; Mueller, E.; Oggioni, L.; Oliveira, António; Rivas, M.; Santana Tschudi, S.; Santin, P.; Santos, Pedro; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; Fundacion La Caixa; Swiss National Science Foundation (SNSF); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Ministerio de Ciencia e Innovación (MICINN); 0000-0001-8160-5076; 0000-0003-0987-1593; 0000-0001-5664-2852; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. An accurate characterization of the known exoplanet population is key to understanding the origin and evolution of planetary systems. Determining true planetary masses through the radial velocity (RV) method is expected to experience a great improvement thanks to the availability of ultra-stable echelle spectrographs. Aims. We took advantage of the extreme precision of the new-generation echelle spectrograph ESPRESSO to characterize the transiting planetary system orbiting the G2V star K2-38 located at 194 pc from the Sun with V similar to 11.4. This system is particularly interesting because it could contain the densest planet detected to date. Methods. We carried out a photometric analysis of the available K2 photometric light curve of this star to measure the radius of its two known planets, K2-38b and K2-38c, with P-b = 4.01593 +/- 0.00050 d and P-c = 10.56103 +/- 0.00090 d, respectively. Using 43 ESPRESSO high-precision RV measurements taken over the course of 8 months along with the 14 previously published HIRES RV measurements, we modeled the orbits of the two planets through a Markov chain Monte Carlo analysis, significantly improving their mass measurements. Results. Using ESPRESSO spectra, we derived the stellar parameters, T-eff = 5731 +/- 66, log g = 4.38 +/- 0.11 dex, and [Fe/H] = 0 :26 +/- 0.05 dex, and thus the mass and radius of K2-38, M-star = 1.03(-0.02)(+0.04) M-circle plus and R-circle plus = 1.06+0:09 0:06 R-circle plus. We determine new values for the planetary properties of both planets. We characterize K2-38b as a super-Earth with R-P = 1.54 +/- 0.14 R-circle plus and M-p = 7.3(-1.0)(+1:1) M-circle plus, and K2-38c as a sub-Neptune with RP = 2.29 +/- 0.26 R-circle plus and M-p = 8.3(-1.3)(+1:3) M (circle plus). Combining the radius and mass measurements, we derived a mean density of rho(p) = 11.0(-2.8)(+4:1) g cm(-3) for K2-38b and rho(p) = 3.8+1:8 1:1 g cm(-3) for K2-38c, confirming K2-38b as one of the densest planets known to date. Conclusions. The best description for the composition of K2-38b comes from an iron-rich Mercury-like model, while K2-38c is better described by a rocky-model with H2 envelope. The maximum collision stripping boundary shows how giant impacts could be the cause for the high density of K2-38b. The irradiation received by each planet places them on opposite sides of the radius valley. We find evidence of a long-period signal in the RV time-series whose origin could be linked to a 0.25-3 MJ planet or stellar activity.Publicación Acceso Abierto ESPRESSO at VLT On-sky performance and first results(EDP Sciences, 2021-01-19) Pepe, Francesco; Cristiani, S.; Rebolo, R.; Santos, Nuno C.; Dekker, H.; Cabral, A.; Di Marcantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; Mayor, M.; Mégevand, D.; Molaro, P.; Riva, M.; Zapatero Osorio, M. R.; Amate, M.; Manescau, A.; Pasquini, L.; Zerbi, Filippo M.; Adibekyan, V.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Álvarez, D.; Alves, D.; Ávila, G.; Baldini, V.; Bandy, T.; Barros, S. C. C.; Benz, W.; Bianco, A.; Borsa, F.; Bourrier, V.; Bouchy, F.; Broeg, C.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Damasso, M.; Deiries, S.; Delabre, B.; Demangeon, O. D. S.; Dumusque, X.; Ehrenreich, D.; Faria, J. P.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; González Hernández, J. I.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, Jean Louis; Maire, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Modigliani, A.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Murphy, M. T.; Nunes, Nelson J.; Oggioni, L.; Oliveira, António; Oshagh, M.; Pallé, E.; Pariani, G.; Poretti, E.; Rasilla, J. L.; Rebordao, J.; Redaelli, E.; Santana Tschudi, S.; Santin, P.; Santos, Pedro; Ségransan, D.; Schmidt, T. M.; Segovia, A.; Sosnowska, D.; Sozzetti, A.; Sousa, S. G.; Spanò, P.; Suárez Mascareño, A.; Tabernero, H. M.; Tenegi, F.; Udry, S.; Zanutta, A.; Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Agencia Estatal de Investigación (AEI); Australian Research Council; 0000-0002-9433-871X; 0000-0003-0513-8116; 0000-0002-4339-0550; 0000-0002-6728-244X; 0000-0003-2434-3625; 0000-0002-7504-365X; 0000-0002-7040-5498; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. ESPRESSO is the new high-resolution spectrograph of ESO’s Very Large Telescope (VLT). It was designed for ultra-high radial-velocity (RV) precision and extreme spectral fidelity with the aim of performing exoplanet research and fundamental astrophysical experiments with unprecedented precision and accuracy. It is able to observe with any of the four Unit Telescopes (UTs) of the VLT at a spectral resolving power of 140 000 or 190 000 over the 378.2 to 788.7 nm wavelength range; it can also observe with all four UTs together, turning the VLT into a 16 m diameter equivalent telescope in terms of collecting area while still providing a resolving power of 70 000. Aims. We provide a general description of the ESPRESSO instrument, report on its on-sky performance, and present our Guaranteed Time Observation (GTO) program along with its first results. Methods. ESPRESSO was installed on the Paranal Observatory in fall 2017. Commissioning (on-sky testing) was conducted between December 2017 and September 2018. The instrument saw its official start of operations on October 1, 2018, but improvements to the instrument and recommissioning runs were conducted until July 2019. Results. The measured overall optical throughput of ESPRESSO at 550 nm and a seeing of 0.65″ exceeds the 10% mark under nominal astroclimatic conditions. We demonstrate an RV precision of better than 25 cm s−1 during a single night and 50 cm s−1 over several months. These values being limited by photon noise and stellar jitter shows that the performance is compatible with an instrumental precision of 10 cm s−1. No difference has been measured across the UTs, neither in throughput nor RV precision. Conclusions. The combination of the large collecting telescope area with the efficiency and the exquisite spectral fidelity of ESPRESSO opens a new parameter space in RV measurements, the study of planetary atmospheres, fundamental constants, stellar characterization, and many other fields.Publicación Acceso Abierto ESPRESSO high-resolution transmission spectroscopy of WASP-76 b(EDP Sciences, 2021-02-19) Tabernero, H. M.; Zapatero Osorio, M. R.; Allart, R.; Borsa, F.; Casasayas Barris, N.; Demangeon, O. D. S.; Ehrenreich, D.; Lillo Box, J.; Lovis, C.; Pallé, E.; Sousa, S. G.; Rebolo, R.; Santos, Nuno C.; Pepe, Francesco; Cristiani, S.; Adibekyan, V.; Allende Prieto, C.; Alibert, Y.; Barros, S. C. C.; Bouchy, F.; Bourrier, V.; D´Odorico, V.; Dumusque, X.; Faria, J. P.; Figueira, P.; Genova Santos, R.; González Hernández, J. I.; Hojjatpanah, S.; Lo Curto, G.; Lavie, B.; Martins, C. J. A. P.; Martins, J. H. C.; Mehner, A.; Micela, G.; Molaro, P.; Nunes, Nelson J.; Poretti, E.; Seidel, J. V.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; Aliverti, M.; Affolter, M.; Alves, D.; Amate, M.; Ávila, G.; Bandy, T.; Benz, W.; Bianco, A.; Broeg, C.; Cabral, A.; Conconi, P.; Coelho, J.; Cumani, C.; Deiries, S.; Dekker, H.; Delabre, B.; Fragoso, A.; Genoni, M.; Genolet, L.; Hughes, I.; Knudstrup, J.; Kerber, F.; Landoni, M.; Lizon, Jean Louis; Maire, C.; Manescau, A.; Di Marcantonio, P.; Mégevand, D.; Monteiro, M.; Moschetti, M.; Mueller, E.; Modigliani, A.; Oggioni, L.; Oliveira, António; Pariani, G.; Pasquini, L.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, Pedro; Segovia, A.; Sosnowska, D.; Spanò, P.; Tenegi, F.; Iwert, O.; Zanutta, A.; Zerbi, Filippo M.; European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Istituto Nazionale di Astrofisica (INAF); Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. [0000-0003-0513-8116]; Coelho, F. M. [0000-0002-4339-0550]; Faria, J. [0000-0002-6728-244X]; Santos, N. [0000-0003-4422-2919]Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly irradiated, ultra-hot Jupiter-sized planet, WASP-76b. We investigated the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R ≈ 140 000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800–7880 Å) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows ‘wiggles’, which are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 σ (Na I) and 2.8 σ (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 σ upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we confirm the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~0.1% in the transmission spectrum and ~10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.Publicación Acceso Abierto HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS .(Oxford Academics: Blackwell Publishing, 2020-01-15) Espinoza, N.; Brahm, R.; Henning, T.; Jordán, A.; Dorn, C.; Rojas, F.; Sarkis, P.; Kossakowski, D.; Schlecker, M.; Díaz, M. R.; Jenkins, J. S.; Aguilera Gómez, C.; Jenkins, J. M.; Twicken, J. D.; Collins, K. A.; Lissauer, J. J.; Armstrong, D. J.; Adibekyan, V.; Barrado, D.; Barros, S. C. C.; Battley, M.; Bayliss, D.; Bouchy, F.; Bryant, E. M.; Cooke, B. F.; Demangeon, O. D. S.; Dumusque, X.; Figueira, P.; Giles, H.; Lillo Box, J.; Lovis, C.; Nielsen, L. D.; Pepe, Francesco; Pollacco, D.; Santos, Nuno C.; Sousa, S. G.; Udry, S.; Wheatley, Peter; Turner, O.; Marmier, M.; Ségransan, D.; Ricker, George; Latham, D.; Seager, S.; Winn, J. N.; Kielkopf, J. F.; Hart, R.; Wingham, G.; Jensen, E. L. N.; Helminiak, K. G.; Tokovinin, A.; Briceño, C.; Ziegler, C.; Law, N. M.; Mann, A. W.; Daylan, T.; Doty, J. P.; Guerrero, N.; Boyd, P.; Crossfield, I.; Morris, Robert L.; Henze, C. E.; Dean Chacon, A.; Gómez, Felipe; Comisión Nacional de Investigación Científica y Tecnológica (CONICYT); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Science and Technology Facilities Council (STFC); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); National Science Centre, Poland (NCN); Millennium Institute of Astrophysics (MAS); Barrado, D. [https://orcid.org/0000-0002-5971-9242]; Lillo Box, J. [https://orcid.org/0000-0003-3742-1987]; Díaz, M. [https://orcid.org/0000-0002-2100-3257]; Wheatley, P. [https://orcid.org/0000-0003-1452-2240]; Nielsen, L. D. [https://orcid.org/0000-0002-5254-2499]; Figueira, P. [https://orcid.org/0000-0001-8504-283X]; Jenssen, E. [https://orcid.org/0000-0002-4625-7333]; Barros, S. [https://orcid.org/0000-0003-2434-3625]; Espinoza Pérez, N. [https://orcid.org/0000-0001-9513-1449]; Armstrong, D. J. [https://orcid.org/0000-0002-5080-4117]; Bayliss, D. [https://orcid.org/0000-0001-6023-1335]; Turner, O. [https://orcid.org/0000-0002-8216-2796]; Sousa, S. G. [https://orcid.org/0000-0001-9047-2965]; Kielpof, J. F. [https://orcid.org/0000-0003-0497-2651]We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition - similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.Publicación Acceso Abierto K2-111: an old system with two planets in near-resonance.(Oxford Academics: Blackwell Publishing, 2020-10-27) Mortier, A.; Zapatero Osorio, M. R.; Malavolta, L.; Alibert, Y.; Rice, K.; Lillo Box, J.; Vanderburg, A.; Oshagh, M.; Buchhave, L. A.; Adibekyan, V.; Delgado Mena, E.; López Morales, M.; Charbonneau, D.; Sousa, S. G.; Lovis, C.; After, L.; Allende Prieto, C.; Barros, S. C. C.; Benatti, S.; Bonomo, A. S.; Boschin, W.; Bouchy, F.; Cabral, A.; Collier Cameron, A.; Cosentino, R.; Cristiani, S.; Demangeon, O. D. S.; Di Marcantonio, P.; D´Odorico, V.; Dumusque, X.; Ehrenreich, D.; Figueira, P.; Fiorenzano, A. F. M.; Ghedina, A.; González Hernández, J. I.; Haldemann, J.; Harutyunyan, A.; Haywood, R. D.; Latham, D. W.; Lavie, B.; Lo Curto, G.; Maldonado, J.; Menescau, A.; Martins, C. J. A. P.; Mayor, M.; Mégevand, D.; Mehner, A.; Micela, G.; Molaro, P.; Molinari, E.; Nunes, Nelson J.; Pepe, Francesco; Pallé, E.; Phillips, D.; Piotto, G.; Pinamonti, M.; Poretti, E.; Rivas, M.; Rebolo, R.; Santos, Nuno C.; Sasselov, D.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; West, R. G.; Watson, C. A.; Wilson, T. G.; Science and Technology Facilities Council (STFC); Istituto Nazionale di Astrofisica (INAF); Swiss National Science Foundation (SNSF); Fundação para a Ciência e a Tecnologia (FCT); National Aeronautics and Space Administration (NASA); European Research Council (ERC); 0000-0002-9433-871X; 0000-0002-3814-5323; 0000-0002-0571-4163; 0000-0003-4434-2195; 0000-0003-1605-5666; 0000-0001-7246-5438; 0000-0003-2434-3625; 0000-0003-1231-2389; 0000-0003-1784-1431; 0000-0002-7504-365X; 0000-0002-0601-6199; 0000-0001-8749-1962; 0000-0002-8863-7828; 0000-0003-4422-2919; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H]=-0.46), but alpha-enhanced ([alpha/Fe]=0.27), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT, shows that the transiting planet, K2-111 b, orbits with a period P-b = 5.3518 +/- 0.0004 d and has a planet radius of 1.82(-0.09)(+0.11) R-circle plus and a mass of 5.29(-0.77)(+0.76) M-circle plus, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111 b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111 c, with an orbital period of 15.6785 +/- 0.0064 d, orbiting in near-3:1 mean motion resonance with the transiting planet, and a minimum planet mass of 11.3 +/- 1.1M(circle plus). Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.Publicación Acceso Abierto Mass and density of the transiting hot and rocky super-Earth LHS 1478 b (TOI-1640 b)(EDP Sciences, 2021-05-21) Soto, M. G.; Anglada Escudé, G.; Dreizler, S.; Molaverdikhani, K.; Kemmer, J.; Rodríguez López, C.; Lillo Box, J.; Pallé, E.; Espinoza, N.; Caballero, J. A.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Narita, N.; Hirano, T.; Amado, P. J.; Béjar, V. J. S.; Bluhm, P.; Burke, C. J.; Caldwell, D. A.; Charbonneau, D.; Cloutier, R.; Collins, K. A.; Cortés Contreras, M.; Girardin, E.; Guerra, P.; Harakawa, H.; Hatzes, Artie; Irwin, J.; Jenkins, J. M.; Jensen, E.; Kawauchi, K.; Kotani, T.; Kudo, T.; Kunimoto, M.; Kuzuhara, M.; Latham, D. W.; Montes, D.; Morales, J. C.; Mori, M.; Nelson, Richard; Omiya, M.; Pedraz, S.; Passegger, V. M.; Rackham, B. V.; Rudat, A.; Schlieder, Joshua; Schöfer, P.; Schweitzer, A.; Selezneva, A.; Stockdale, C.; Tamura, M.; Trifonov, T.; Vanderspek, R.; Watanabe, N.; Deutsche Forschungsgemeinschaft (DFG); Ministerio de Economía y Competitividad (MINECO); Junta de Andalucía; Science and Technology Facilities Council (STFC); National Aeronautics and Space Administration (NASA); Agencia Estatal de Investigación (AEI); Generalitat de Catalunya; Japan Society for the Promotion of Science (JSPS); Soto, M. G. [0000-0001-9743-5649]; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC), SEV-2015-0548; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737One of the main objectives of the Transiting Exoplanet Survey Satellite (TESS) mission is the discovery of small rocky planets around relatively bright nearby stars. Here, we report the discovery and characterization of the transiting super-Earth planet orbiting LHS 1478 (TOI-1640). The star is an inactive red dwarf (J ~ 9.6 mag and spectral type m3 V) with mass and radius estimates of 0.20 ± 0.01M⊙ and 0.25 ± 0.01R⊙, respectively, and an effective temperature of 3381 ± 54 K. It was observed by TESS in four sectors. These data revealed a transit-like feature with a period of 1.949 days. We combined the TESS data with three ground-based transit measurements, 57 radial velocity (RV) measurements from CARMENES, and 13 RV measurements from IRD, determining that the signal is produced by a planet with a mass of 2.33−0.20+0.20 M⊕ and a radius of 1.24−0.05+0.05 R⊕. The resulting bulk density of this planet is 6.67 g cm−3, which is consistent with a rocky planet with an Fe- and MgSiO3-dominated composition. Although the planet would be too hot to sustain liquid water on its surface (its equilibrium temperature is about ~595 K, suggesting aVenus-like atmosphere), spectroscopic metrics based on the capabilities of the forthcoming James Webb Space Telescope and the fact that the host star is rather inactive indicate that this is one of the most favorable known rocky exoplanets for atmospheric characterization.Publicación Acceso Abierto Mass determinations of the three mini-Neptunes transiting TOI-125(Oxford Academics: Oxford University Press, 2020-01-23) Nielsen, L. D.; Gandolfi, D.; Armstrong, D. J.; Jenkins, J. S.; Fridlund, M.; Santos, Nuno C.; Dai, F.; Adibekyan, V.; Luque, R.; Steffen, J. H.; Esposito, M.; Meru, F.; Sabotta, S.; Bolmont, É.; Kossakowski, D.; Otegi, Jon F.; Murgas Alcaino, F.; Stalport, M.; Rodler, F.; Díaz, M. R.; Kurtovic, N. T.; Ricker, George; Vanderspek, R.; Latham, D. W.; Seager, S.; Winn, J. N.; Jenkins, J. M.; Allart, R.; Almenara, J. M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Berdiñas, Z. M.; Boisse, I.; Bouchy, F.; Boyd, P.; Brown, D. J. A.; Bryant, E. M.; Burke, C. J.; Cochran, W. D.; Cooke, B. F.; Demangeon, O. D. S.; Díaz, R. F.; Dittman, J.; Dorn, C.; Dumusque, X.; García, R. A.; González Cuesta, L.; Georgieva, I.; Guerrero, N.; Hatzes, Artie; Helled, R.; Henze, C. E.; Hojjatpanah, S.; Korth, J.; Lam, K. W. F.; Lillo Box, J.; López, Théo A.; Livingston, J.; Mathur, S.; Mousis, O.; Narita, N.; Osborn, Hugh P.; Pallé, E.; Peña Rojas, P. A.; Persson, Carina; Quinn, S. N.; Rauer, H.; Redfield, S.; Santerne, A.; Dos Santos, L. A.; Seidel, J. V.; Sousa, S. G.; Ting, E. B.; Turbet, M.; Udry, S.; Vanderburg, A.; Van Eylen, V.; Vines, J. I.; Wheatley, Peter; Wilson, P. A.; Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); Swiss National Science Foundation (SNSF); Deutsche Forschungsgemeinschaft (DFG); Agencia Estatal de Investigación (AEI); European Southern Observatory (ESO); Swiss National Centre of Competence inResearch (NCCR); National Aeronautics and Space Administration (NASA); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Vanderburg, A. [0000-0001-7246-5438]; Dos Santos, L. [0000-0002-2248-3838]; Barrado, D. [0000-0002-5971-9242]; Cochran, W. [0000-0001-9662-3496]; Lillo Box, J. [0000-0003-3742-1987]; Barros, S. [0000-0003-2434-3625]; Stalport, M. [0000-0003-0996-6402]; Dorn, C. [0000-0001-6110-4610]; Nielsen, L. D. [0000-0002-5254-2499]; Seidel, J. V. [0000-0002-7990-9596]; Diaz, M. R. [0000-0002-2100-3257]; Bolmont, E. [0000-0001-5657-4503]; Adibekyan, V. [0000-0002-0601-6199]; Van Eylen, V. [0000-0001-5542-8870]; Armstrong, D. [0000-0002-5080-4117]; Korth, J. [0000-0002-0076-6239]; Díaz, R. [0000-0001-9289-5160]; Santos, N. [0000-0003-4422-2919]; Luque, R. [0000-0002-4671-2957]; Turbet, M. [0000-0003-2260-9856]; Mathur, S. [0000-0002-0129-0316]; Strom, P. A. [0000-0002-7823-1090]; Sabotta, S. [0000-0001-9078-5574]; Wheatley, P. [0000-0003-1452-2240]; Hojjatpanah, S. [0000-0002-0417-1902]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star T01-125, a V = 11,0 KO dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TO1-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4,65 d, a radius of 2,726 + 0,075 RE, a mass of 9,50 0,88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2,759 0.10 RE and a mass of 6,63 + 0,99 ME, being the puffiest of the three planets. T01-125d has an orbital period of 19,98 d and a radius of 2.93 + 0,17 RE and mass 13,6 1,2 ME, For T01-125b and d, we find unusual high eccentricities of 0.19 0.04 and 0.17+(c):(!,(, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for T01-125.04 (Rp = 1.36 RE, P = 0.53 d), we find a 2a upper mass limit of 1.6 ME, whereas T01-125.05 (RP = 4.2-'2E44 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.Publicación Acceso Abierto Masses for the seven planets in K2-32 and K2-233 Four diverse planets in resonant chain and the first young rocky worlds(EDP Sciences, 2020-08-11) Lillo Box, J.; López, Théo A.; Santerne, A.; Nielsen, L. D.; Barros, S. C. C.; Deleuil, M.; Acuña, L.; Mousis, O.; Sousa, S. G.; Adibekyan, V.; Armstrong, D. J.; Barrado, D.; Bayliss, D.; Brown, D. J. A.; Demangeon, O. D. S.; Dumusque, X.; Figueira, P.; Hojjatpanah, S.; Osborn, Hugh P.; Santos, Nuno C.; Udry, S.; Science and Technology Facilities Council (STFC); Agencia Estatal de Investigación (AEI); Fundacao para a Ciencia e a Tecnologia (FCT); Lillo Box, J. [0000-0003-3742-1987]; López, T. [0000-0001-6622-1250]; Santerne, A. [0000-0002-3586-1316]; Barros, S. [0000-0003-2434-3625]; Deleuil, M. [0000-0001-6036-0225]; Sousa, S. G. [0000-0001-9047-2965]; Adibekyan, V. [0000-0002-0601-6199]; Armstrong, D. J. [0000-0002-5080-4117]; Barrado, D. [0000-0002-5971-9242]; Bayliss, D. [0000-0001-6023-1335]; Brown, D. J. A. [0000-0003-1098-2442]; Demangeon, O. D. S. [0000-0001-7918-0355]; Dumusque, X. [0000-0002-9332-2011]; Figueira, P. [0000-0001-8504-283X]; Hojjatpanah, S. [0000-0002-0417-1902]; Osborn, H. [0000-0002-4047-4724]; Santos, N. C. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. High-precision planetary densities are key pieces of information necessary to derive robust atmospheric properties for extrasolar planets. Measuring precise masses is the most challenging part of this task, especially in multi-planetary systems. The ESO-K2 collaboration focuses on the follow-up of a selection of multi-planetary systems detected by the K2 mission using the HARPS instrument with this goal in mind. Aims. In this work, we measure the masses and densities of two multi-planetary systems: a four-planet near resonant chain system (K2-32) and a young (~400 Myr old) planetary system consisting of three close-in small planets (K2-233). Methods. We obtained 199 new HARPS observations for K2-32 and 124 for K2-233 covering a long baseline of more than three years. We performed a joint analysis of the radial velocities and K2 photometry with PASTIS to precisely measure and constrained the properties of these planets, focusing on their masses and orbital properties. Results. We find that K2-32 is a compact scaled-down version of the Solar System’s architecture, with a small rocky inner planet (Me = 2.1−1.1+1.3 M⊕, Pe ~ 4.35 days) followed by an inflated Neptune-mass planet (Mb = 15.0−1.7+1.8 M⊕, Pb ~ 8.99 days) and two external sub-Neptunes (Mc = 8.1 ± 2.4 M⊕, Pc ~ 20.66 days; Md = 6.7 ± 2.5 M⊕, Pd ~ 31.72 days). K2-32 becomes one of the few multi-planetary systems with four or more planets known where all have measured masses and radii. Additionally, we constrain the masses of the three planets in the K2-233 system through marginal detection of their induced radial velocity variations. For the two inner Earth-size planets we constrain their masses at a 95% confidence level to be smaller than Mb < 11.3 M⊕ (Pb ~ 2.47 days), Mc < 12.8 M⊕ (Pc ~ 7.06 days). The outer planet is a sub-Neptune size planet with an inferred mass of Md = 8.3−4.7+5.2 M⊕ (Md < 21.1 M⊕, Pd ~ 24.36 days). Conclusions. Our observations of these two planetary systems confirm for the first time the rocky nature of two planets orbiting a young star, with relatively short orbital periods (<7 days). They provide key information for planet formation and evolution models of telluric planets. Additionally, the Neptune-like derived masses of the three planets, K2-32 b, c, d, puts them in a relatively unexplored regime of incident flux and planet mass, which is key for transmission spectroscopy studies in the near future.Publicación Acceso Abierto Planetary nebulae seen with TESS: Discovery of new binary central star candidates from Cycle 1(EDP Sciences, 2020-03-24) Aller, A.; Lillo Box, J.; Jones, David; Miranda, L. F.; Barceló Forteza, S.; Comunidad de Madrid; Agencia Estatal de Investigación (AEI); 0000-0003-0884-9589; 0000-0003-3742-1987; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737; Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709Context. It has become clear in recent years that binarity plays a crucial role in many aspects of planetary nebulae (PNe), particularly with regard to the striking morphologies they exhibit. To date, there are nearly 60 known binary central stars of PNe (bCSPNe). However, both theory and observation indicate that this figure represents only the tip of the iceberg, with the Galactic PN population hosting orders of magnitude more stars. Aims. We are involved in a search for new bCSPNe with the aim of enhancing the statistical validation of the key role of binarity in the formation and shaping of PNe. New discoveries of bCSPNe and their characterization carry important implications not only for understanding PN evolution, but also for studying binary evolution and the common-envelope phase, which is still poorly understood. Methods. We used data from the TESS satellite to search for variability in the eight CSPNe that belong to the two-minute cadence of preselected targets in Cycle 1, with their available pipeline-extracted light curves. We identified strong periodicities and analysed them in the context of the binary scenario. Results. All the CSPNe but one (Abell 15) show clear signs of periodic variability in TESS. The cause of this variability can be attributed to different effects, some of them requiring the presence of a companion star. We find simple sinusoidal modulations in several of the systems, compatible with irradiation effects. In addition, two of the central stars (PG 1034+001 and NGC 5189) also show photometric variations due to ellipsoidal variations and other signs of variability that are probably caused by star spots or relativistic Doppler-beaming. The case of the well-studied Helix Nebula is of particular interest; here we constructed a series of binary models to explain the modulations we see in the light curve. We find that the variability constrains the possible companion to be very low-mass main-sequence star or sub-stellar object. We also identify, in substantial detail, the individual pulsation frequencies of NGC 246.Publicación Acceso Abierto Planetary system LHS 1140 revisited with ESPRESSO and TESS(EDP Sciences, 2020-10-15) Lillo Box, J.; Figueira, P.; Leleu, A.; Acuña, L.; Faria, J. P.; Harada, N.; Santos, Nuno C.; Correia, A. C. M.; Robutel, P.; Deleuil, M.; Barrado, D.; Sousa, S. G.; Bonfils, X.; Mousis, O.; Almenara, J. M.; Astudillo Defru, N.; Marcq, E.; Udry, S.; Lovis, C.; Pepe, Francesco; Fundacao para a Ciencia e a Tecnologia (FCT); Agencia Estatal de Investigación (AEI); Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT); European Commission (EC); Faria, J. [0000-0002-6728-244X]; Correia, A. C. M. [0000-0002-8946-8579]; Leleu, A. [0000-0003-2051-7974]; Lillo Box, J. [0000-0003-3742-1987]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. LHS 1140 is an M dwarf known to host two transiting planets at orbital periods of 3.77 and 24.7 days. They were detected with HARPS and Spitzer. The external planet (LHS 1140 b) is a rocky super-Earth that is located in the middle of the habitable zone of this low-mass star. All these properties place this system at the forefront of the habitable exoplanet exploration, and it therefore constitutes a relevant case for further astrobiological studies, including atmospheric observations. Aims. We further characterize this system by improving the physical and orbital properties of the known planets, search for additional planetary-mass components in the system, and explore the possibility of co-orbitals. Methods. We collected 113 new high-precision radial velocity observations with ESPRESSO over a 1.5-yr time span with an average photon-noise precision of 1.07 m s−1. We performed an extensive analysis of the HARPS and ESPRESSO datasets and also analyzed them together with the new TESS photometry. We analyzed the Bayesian evidence of several models with different numbers of planets and orbital configurations. Results. We significantly improve our knowledge of the properties of the known planets LHS 1140 b (Pb ~ 24.7 days) and LHS 1140 c (Pc ~ 3.77 days). We determine new masses with a precision of 6% for LHS 1140 b (6.48 ± 0.46 M⊕) and 9% for LHS 1140 c (mc = 1.78 ± 0.17 M⊕). This reduces the uncertainties relative to previously published values by half. Although both planets have Earth-like bulk compositions, the internal structure analysis suggests that LHS 1140 b might be iron-enriched and LHS 1140 c might be a true Earth twin. In both cases, the water content is compatible to a maximum fraction of 10–12% in mass, which is equivalent to a deep ocean layer of 779 ± 650 km for the habitable-zone planet LHS 1140 b. Our results also provide evidence for a new planet candidate in the system (md = 4.8 ± 1.1M⊕) on a 78.9-day orbital period, which is detected through three independent methods. The analysis also allows us to discard other planets above 0.5 M⊕ for periods shorter than 10 days and above 2 M⊕ for periods up to one year. Finally, our co-orbital analysis discards co-orbital planets in the tadpole and horseshoe configurations of LHS 1140 b down to 1 M⊕ with a 95% confidence level (twice better than with the previous HARPS dataset). Indications for a possible co-orbital signal in LHS 1140 c are detected in both radial velocity (alternatively explained by a high eccentricity) and photometric data (alternatively explained by systematics), however. Conclusions. The new precise measurements of the planet properties of the two transiting planets in LHS 1140 as well as the detection of the planet candidate LHS 1140 d make this system a key target for atmospheric studies of rocky worlds at different stellar irradiations.Publicación Acceso Abierto Pleiades or Not? Resolving the Status of the Lithium-rich M Dwarfs HHJ 339 and HHJ 430(The Institute of Physics (IOP), 2020-06-18) Stauffer, J.; Barrado, D.; David, T.; Rebull, L. M.; Hillenbrand, L. A.; Mamajek, E. E.; Oppenheimer, R.; Aigrain, S.; Bouy, H.; Lillo Box, J.; Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA); Stauffer, J. [0000-0003-3595-7382]; David, T. [0000-0001-6534-6246]; Rebull, L. M. [0000-0001-6381-515X]; Mamajek, E. E. [0000-0003-2008-1488]; Oppenheimer, R. [0000-0001-7130-7681]; Aigrain, S. [0000-0003-1453-0574]; Bouy, H. [0000-0002-7084-487X]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Oppenheimer et al. discovered two M5 dwarfs in the Pleiades with nearly primordial lithium. These stars are not low enough in mass to represent the leading edge of the lithium depletion boundary at Pleiades age (~125 Myr). A possible explanation for the enhanced lithium in these stars is that they are actually not members of the Pleiades but instead are members of a younger moving group seen in projection toward the Pleiades. We have used data from Gaia DR2 to confirm that these two stars, HHJ 339 and HHJ 430, are indeed not members of the Pleiades. Based on their space motions, parallaxes, and positions in a Gaia-based color–magnitude diagram, it is probable that these two stars are about 40 parsecs foreground to the Pleiades and have ages of ~25 Myr. Kinematically they are best matched to the 32 Ori moving group.Publicación Acceso Abierto Precise radial velocities of giant stars XV. Mysterious nearly periodic radial velocity variations in the eccentric binary ε Cygni(EDP Sciences, 2021-03-29) Heeren, P.; Reffert, S.; Trifonov, T.; Wong, K. H.; Hoi Lee, M.; Lillo Box, J.; Quirrenbach, A.; Arentoft, T.; Albrecht, S.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Agencia Estatal de Investigación (AEI); Danish National Research Foundation; Danish Council for Independent Research; Heeren, P. [0000-0002-3662-9930]; Reffert, S. [0000-0002-0460-8289]; Trifonov, T. [0000-0002-0236-775X]; Hoi Lee, M. [0000-0003-1930-5683]; Lillo Box, J. [0000-0003-3742-1987]; Albrecht, S. [0000-0003-1762-8235]; Fredslund Andersen, M. [0000-0002-9194-8520]; Pallé, P. L. [0000-0003-3803-4823]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. Using the Hamilton Échelle Spectrograph at Lick Observatory, we have obtained precise radial velocities (RVs) of a sample of 373 G- and K-giant stars over more than 12 yr, leading to the discovery of several single and multiple planetary systems. The RVs of the long-period (~53 yr) spectroscopic binary ε Cyg (HIP 102488) are found to exhibit additional regular variations with a much shorter period (~291 days). Aims. We intend to improve the orbital solution of the ε Cyg system and attempt to identify the cause of the nearly periodic shorter period variations, which might be due to an additional substellar companion. Methods. We used precise RV measurements of the K-giant star ε Cyg from Lick Observatory, in combination with a large set of RVs collected more recently with the SONG telescope, as well as archival data sets. We fit Keplerian and fully dynamical N-body models to the RVs in order to explore the properties of a previously known spectroscopic stellar companion and to investigate whether there is an additional planetary companion in the system. To search for long-term stable regions in the parameter space around the orbit of this putative planet, we ran a stability analysis using an N-body code. Furthermore, we explored the possibility of co-orbital bodies to the planet with a demodulation technique. We tested the hypothesis of ε Cyg being a hierarchical stellar triple by using a modified version of the N-body code. Alternative causes for the observed RV variations, such as stellar spots and oscillations, were examined by analyzing photometric data of the system and by comparing its properties to known variable stars with long secondary periods and heartbeat stars from the literature. Results. Our Keplerian model characterizes the orbit of the spectroscopic binary to higher precision than achieved previously, resulting in a semi-major axis of a = 15.8 AU, an eccentricity of e = 0.93, and a minimum mass of the secondary of msini = 0.265 M⊙. Additional short-period RV variations closely resemble the signal of a Jupiter-mass planet orbiting the evolved primary component with a period of 291 d, but the period and amplitude of the putative orbit change strongly over time. Furthermore, in our stability analysis of the system, no stable orbits could be found in a large region around the best fit. Both of these findings deem a planetary cause of the RV variations unlikely. Most of the investigated alternative scenarios also fail to explain the observed variability convincingly. Due to its very eccentric binary orbit, it seems possible, however, that ε Cyg could be an extreme example of a heartbeat system.Publicación Acceso Abierto Revisiting Proxima with ESPRESSO(EDP Sciences, 2020-07-13) Suárez Mascareño, A.; Faria, J. P.; Figueira, P.; Lovis, C.; Damasso, M.; González Hernández, J. I.; Rebolo, R.; Cristiani, S.; Pepe, Francesco; Santos, Nuno C.; Zapatero Osorio, M. R.; Adibekyan, V.; Hojjatpanah, S.; Sozzetti, A.; Murgas Alcaino, F.; Abreu, M.; Affolter, M.; Alibert, Y.; Aliverti, M.; Allart, R.; Allende Prieto, C.; Alves, D.; Amate, M.; Ávila, G.; Baldini, V.; Bandi, T.; Barros, S. C. C.; Bianco, A.; Benz, W.; Bouchy, F.; Broeg, C.; Cabral, A.; Calderone, G.; Cirami, R.; Coelho, J.; Conconi, P.; Coretti, I.; Cumani, C.; Cupani, G.; D´Odorico, V.; Deiries, S.; Delabre, B.; Di Marcantonio, P.; Dumusque, X.; Ehrenreich, D.; Fragoso, A.; Genolet, L.; Genoni, M.; Génova Santos, R.; Hughes, I.; Iwert, O.; Kerber, F.; Knudstrup, J.; Landoni, M.; Lavie, B.; Lillo Box, J.; Lizon, Jean Louis; Lo Curto, G.; Maire, C.; Manescau, A.; Martins, C. J. A. P.; Mégevand, D.; Mehner, A.; Micela, G.; Modigliani, A.; Molaro, P.; Monteiro, M. A.; Monteiro, M. J. P. F. G.; Moschetti, M.; Mueller, E.; Nunes, Nelson J.; Oggioni, L.; Oliveira, António; Pallé, E.; Pariani, G.; Pasquini, L.; Poretti, E.; Rasilla, J. L.; Redaelli, E.; Riva, M.; Santana Tschudi, S.; Santin, P.; Santos, Pedro; Segovia, A.; Sosnowska, D.; Sousa, S. G.; Spanò, P.; Tenegi, F.; Udry, S.; Zanutta, A.; Zerbi, Filippo M.; Agencia Estatal de Investigación (AEI); Ministerio de Economía y Competitividad (MINECO); Swiss National Science Foundation (SNSF); Fundacao para a Ciencia e a Tecnologia (FCT); European Research Council (ERC); Lillo Box, J. [0000-0003-3742-1987]; Faria, J. [0000-0002-6728-244X]; Nunes, N. J. [0000-0002-3837-6914]; Molaro, P. [0000-0002-0571-4163]; Mascareño, A. S. [0000-0002-3814-5323]; Cabral, A. [0000-0002-9433-871X]; Monteiro, M. J. P. F. G. [0000-0003-0513-8116]; Redaelli, E. M. A. [0000-0001-8185-2122]; Barros, S. [0000-0003-2434-3625]; Santos, N. [0000-0003-4422-2919]; Abreu, M. [0000-0002-0716-9568]; Coretti, I. [0000-0001-9374-3249]; Sozzetti, A. [0000-0002-7504-365X]; Adibekyan, V. [0000-0002-0601-6199]; Monteiro, M. [0000-0001-5644-0898]; Damasso, M. [0000-0001-9984-4278]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Context. The discovery of Proxima b marked one of the most important milestones in exoplanetary science in recent years. Yet the limited precision of the available radial velocity data and the difficulty in modelling the stellar activity calls for a confirmation of the Earth-mass planet. Aims. We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. Methods. We analysed 63 spectroscopic ESPRESSO observations of Proxima (Gl 551) taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm s−1. We combined these data with archival spectroscopic observations and newly obtained photometric measurements to model the stellar activity signals and disentangle them from planetary signals in the radial velocity (RV) data. We ran a joint Markov chain Monte Carlo analysis on the time series of the RV and full width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with the stellar activity signals. Results. We confirm the presence of Proxima b independently in the ESPRESSO data and in the combined ESPRESSO+ HARPS+UVES dataset. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ± 0.029 days, with a minimum mass of 1.29 ± 0.13 M⊕. In the combined dataset we measure a period of 11.18427 ± 0.00070 days with a minimum mass of 1.173 ± 0.086 M⊕. We get a clear measurement of the stellar rotation period (87 ± 12 d) and its induced RV signal, but no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of only 40 cm s−1. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ± 0.08 M⊕. We find that forthe case of Proxima, the full width half maximum of the cross-correlation function can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the RV data from part of the influence of stellar activity. The activity-induced RV signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot dominated. This could be used to create differential RVs that are activity dominated and can be used to disentangle activity-induced and planetary-induced signals. The data collected excludes the presence of extra companions with masses above 0.6 M⊕ at periods shorter than 50 days.Publicación Acceso Abierto Six transiting planets and a chain of Laplace resonances in TOI-178(EDP Sciences, 2021-05-06) Leleu, A.; Alibert, Y.; Hara, N. C.; Hooton, M. J.; Wilson, T. G.; Robutel, P.; Delisle, J. B.; Laskar, J.; Hoyer, S.; Lovis, C.; Bryant, E. M.; Angerhausen, D.; Simon, A. E.; Beck, T.; Sousa, S. G.; Futyan, D.; Di Marcantonio, P.; Ehrenreich, D.; Erikson, A.; Figueira, P.; Acton, J. S.; Haldemann, J.; Thomas, N.; Boué, G.; Tilbrook, R. H.; Isaak, K.; Fridlund, M.; Gandolfi, D.; García Muñoz, Antonio; García, L. J.; Verrecchia, F.; Bárczy, T.; Charnoz, S.; Lecavelier des Etangs, A.; Guillon, M.; Goad, M. R.; González Hernández, J. I.; Guedel, M.; Zapatero Osorio, M. R.; Heng, K.; Jehin, E.; Jenkins, J. S.; Jordán, A.; Kiss, L.; Anderson, D. R.; Murray, C. A.; Anglada Escudé, G.; Fortier, A.; Barrado, D.; Osborn, Hugh P.; Lam, K.; Lendl, M.; Lillo Box, J.; Lo Curto, G.; Corral Van Damme, C.; Bekkelien, A.; Gill, S.; Billot, N.; Piotto, G.; Maxted, P. F. L.; McCormac, J.; Mehner, A.; Micela, G.; Brandeker, A.; Nunes, Nelson J.; Rando, N.; Oshagh, M.; Ottensamer, R.; Pagano, I.; Pallé, E.; Cameron, A. C.; Persson, Carina; Polenta, G.; Pollacco, D.; Poretti, E.; Demangeon, O. D. S.; Sestovic, M.; Demory, B. O.; Magrin, D.; Di Persio, G.; Sozzetti, A.; Ragazzoni, R.; Ratti, F.; Rauer, H.; Raynard, L.; Fossati, L.; Molaro, P.; Nascimbeni, V.; Triaud, A.; Ribas, I.; Santos, Nuno C.; Scandariato, G.; Schneider, J.; Gillen, E.; Smith, A. M. S.; Steller, M.; Suárez Mascareño, A.; Szabó, Gy. M.; Ségransan, D.; Günther, M. N.; Ducrot, E.; Henderson, B.; Pozuelos, F. J.; Hogan, A. E.; Adibekyan, V.; Thompson, S.; Turner, O.; Udry, S.; Van Grootel, V.; Olofsson, G.; Kristiansen, M. H.; Rebolo, R.; Lavie, B.; Barros, S. C. C.; Vines, J. I.; Walton, N. A.; West, R. G.; Wheatley, Peter; Martins, C. J. A. P.; Delrez, L.; Bonfanti, A.; Allart, R.; Allende Prieto, C.; Alonso, R.; Alves, D.; Moyaro, M.; Asquier, J.; Baumjohann, W.; Bayliss, D.; Beck, M.; Pedersen, P. P.; Chamberlain, S.; Pepe, Francesco; Venus, H.; Peter, G.; Correia, A. C. M.; Benz, W.; Bonfils, X.; Bouchy, F.; Bourrier, V.; Queloz, D.; Wolter, D.; Cabrera, J.; Dumusque, X.; Broeg, C.; Buder, M.; Burdanov, A.; Burleigh, M. R.; Reimers, C.; Cooke, B. F.; Cristiani, S.; Damasso, M.; Davies, M. B.; Deleuil, M.; Sebastian, D.; Alvarez, M. [0000-0002-6786-2620]; Carrasco Martínez, J. M. [0000-0002-3029-5853]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from 1.152−0.070+0.073 to 2.87−0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from 1.02−0.23+0.28 to 0.177−0.061+0.055 times the Earth’s density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.Publicación Acceso Abierto The atmosphere of HD 209458b seen with ESPRESSO No detectable planetary absorptions at high resolution(EDP Sciences, 2021-03-02) Casasayas Barris, N.; Pallé, E.; Strangret, M.; Bourrier, V.; Tabernero, H. M.; Yan, F.; Borsa, F.; Allart, R.; Zapatero Osorio, M. R.; Lovis, C.; Sousa, S. G.; Chen, G.; Oshagh, M.; Santos, Nuno C.; Pepe, Francesco; Rebolo, R.; Molaro, P.; Cristiani, S.; Adibekyan, V.; Alibert, Y.; Allende Prieto, C.; Bouchy, F.; Demangeon, O. D. S.; Di Marcantonio, P.; D´Odorico, V.; Ehrenreich, D.; Figueira, P.; Génova Santos, R.; González Hernández, J. I.; Lavie, B.; Lillo Box, J.; Lo Curto, G.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Nunes, Nelson J.; Poretti, E.; Sozzetti, A.; Suárez Mascareño, A.; Udry, S.; National Natural Science Foundation of China (NSFC); Deutsche Forschungsgemeinschaft (DFG); European Research Council (ERC); Fundacao para a Ciencia e a Tecnologia (FCT); Istituto Nazionale di Astrofisica (INAF); Agencia Estatal de Investigación (AEI); Swiss National Science Foundation (SNSF); Yan, F. [0000-0001-9585-9034]; Sozzetti, A. [0000-0002-7504-365X]; Nunes, N. [0000-0002-3837-6914]; Santos, N. [0000-0003-4422-2919]; Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737We observed two transits of the iconic gas giant HD 209458b between 380 and 780 nm, using the high-resolution ESPRESSO spectrograph. The derived planetary transmission spectrum exhibits features at all wavelengths where the parent star shows strong absorption lines, for example, Na I, Mg I, Fe I, Fe II, Ca I, V I, Hα, and K I. We interpreted these features as the signature of the deformation of the stellar line profiles due to the Rossiter-McLaughlin effect, combined with the centre-to-limb effects on the stellar surface, which is in agreement with similar reports recently presented in the literature. We also searched for species that might be present in the planetary atmosphere but not in the stellar spectra, such as TiO and VO, and obtained a negative result. Thus, we find no evidence of any planetary absorption, including previously reported Na I, in the atmosphere of HD 209458b. The high signal-to-noise ratio in the transmission spectrum (~1700 at 590 nm) allows us to compare the modelled deformation of the stellar lines in assuming different one-dimensional stellar atmospheric models. We conclude that the differences among various models and observations remain within the precision limits of the data. However, the transmission light curves are better explained when the centre-to-limb variation is not included in the computation and only the Rossiter-McLaughlin deformation is considered. This demonstrates that ESPRESSO is currently the best facility for spatially resolving the stellar surface spectrum in the optical range using transit observations and carrying out empirical validations of stellar models.










