Examinando por Autor "Osgerby, Steve"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Restringido Cyclic oxidation and mechanical behaviour of slurry aluminide coatings for steam turbine components(Elsevier, 2007-04-02) Agüero, Alina; Muelas Gamo, Raúl; Gutiérrez del Olmo, Marcos; Van Vulpen, R.; Osgerby, Steve; Banks, J. P.The excellent steam oxidation resistance of iron aluminide coatings on ferritic steels at 650 °C has been demonstrated both by laboratory tests and field exposure. These coatings are formed by the application of an Al slurry followed by diffusion heat treatment at 700 °C for 10 h. The resulting microstructure is mostly composed of Fe2Al5 on top of a much thinner FeAl layer. This coating exhibits perpendicular cracks due to thermal expansion mismatch between coating and substrate. However, these stress relieving cracks do not seem to have an effect on the mechanical properties of the substrate. Cyclic oxidation, creep resistance and TMF testing of these coatings at 650 °C indicate excellent performance.Publicación Restringido Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components(Elsevier, 2005-11-21) Osgerby, Steve; Pastor Muro, Ana; Agüero, Alina; Muelas Gamo, RaúlImportant efforts to develop new steels or to protect high creep strength steels in order to allow operation of steam turbines at 650 °C are being carried out world-wide to increase efficiency. Within the European Project “SUPERCOAT” (Coatings for Supercritical Steam Cycles), work has been concentrated in the development of coatings to withstand 50,000–100,000 h of operation at 650 °C under high pressure steam. Aluminide coatings on ferritic–martensitic steels produced by applying an Al slurry followed by a diffusion heat treatment, have shown to be protective at 650 °C under steam for at least 32,000 h of laboratory steam exposure under atmospheric pressure. Although the “as diffused” coatings present through thickness cracks, these do not propagate during exposure to steam or thermal cycling and no new cracks seem to develop. Moreover, no changes in residual stresses could be observed after thermal cycling. Microstructural characterization of samples at different periods of exposures has been carried out by SEM-EDS and XRD. The principal mechanism of coating degradation is loss of Al at the surface due to inwards diffusion. Microhardness as well as Young's modulus and fracture strength were measured using well established techniques. The coatings show reasonable ductility (∼1.6%) when stressed in tension between room temperature and 400 °C which further increases at higher temperatures providing evidence that the coatings should withstand the mechanical conditions likely to be encountered in service.










