Examinando por Autor "Ochoa, H."
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Polar Stratospheric Clouds Detection at Belgrano II Antarctic Station with Visible Ground-Based Spectroscopic Measurements(Multidisciplinary Digital Publishing Institute (MDPI), 2021-04-07) Gómez Martín, L.; Toledo, D.; Prados Roman, C.; Jose, Adame; Ochoa, H.; Yela González, Margarita; Agencia Estatal de Investigación (AEI); Gómez Martín, L. [0000-0002-6655-7659]; Prados Roman, C. [0000-0001-8332-0226]; Adame, J. A. [0000-0002-6302-7193]By studying the evolution of the color index (CI) during twilight at high latitudes, polar stratospheric clouds (PSCs) can be detected and characterized. In this work, this method has been applied to the measurements obtained by a visible ground-based spectrometer and PSCs have been studied over the Belgrano II Antarctic station for years 2018 and 2019. The methodology applied has been validated by full spherical radiative transfer simulations, which confirm that PSCs can be detected and their altitude estimated with this instrumentation. Moreover, our investigation shows that this method is useful even in presence of optically thin tropospheric clouds or aerosols. PSCs observed in this work have been classified by altitude. Our results are in good agreement with the stratospheric temperature evolution obtained by the global meteorological model ECMWF (European Centre for Medium Range Weather Forecasts) and with satellite PSCs observations from CALIPSO (Cloud-Aerosol-Lidar and Infrared Pathfinder Satellite Observations). To investigate the presence and long-term evolution of PSCs, the methodology used in this work could also be applied to foreseen and/or historical observations obtained with ground-based spectrometers such e. g. those dedicated to Differential Optical Absorption Spectroscopy (DOAS) for trace gas observation in Arctic and Antarctic sites.Publicación Acceso Abierto The September 2002 Antarctic vortex major warming as observed by visible spectroscopy and ozone soundings(Taylor & Francis Ltd, 2005-08) Yela González, Margarita; Parrondo, María Concepción; Gil Moulet, Manuel; Rodríguez, S.; Araujo, J.; Ochoa, H.; Deferrari, Guillermo Alejandro; Diaz, Susana BeatrizThe record of O3 total column and NO2 obtained by visible spectroscopy at Ushuaia (55° S), Marambio (64° S) and Belgrano (78° S) and vertical ozone profiles from the latter station provide insight into the unprecedented major warming observed above Antarctica in the last week of September 2002. From 18 September to 25 September the temperature increased 54°C at the isentropic level of 700 K. The temperature anomaly was observed down to the level of 300 K in which a well-defined tropopause was established. From comparison of the ozone profiles before and during the event, it can be seen that a fast increase in O3 took place basically above 500 K, but the layer where the ozone hole occurs was barely affected. Low potential vorticity values above Belgrano occurred only at levels above 500 K, confirming that the vortex split was confined to heights above the layer of the Antarctic spring depletion. The signature of poleward-transported air is clearly visible from the NO2 column departure from the envelope of the previous years in all three stations. NO2 columns larger than typical for ozone hole conditions by 400% were observed at Belgrano. Diurnal variations provide evidence of non-denitrified extra-vortex air.










