Examinando por Autor "Bastide, L."
Mostrando 1 - 4 de 4
- Resultados por página
- Opciones de ordenación
Publicación Acceso Abierto Evaluation of a liquid crystal based polarization modulator for a space mission thermal environment(Elsevier, 2017-09-21) Silva-López, Manuel; Bastide, L.; Restrepo, R.; García Parejo, Pilar; Álvarez-Herrrero, AlbertoThe Multi Element Telescope for Imaging and Spectroscopy (METIS) is one of the remote sensing instruments to be onboard the future NASA/ESA Solar Orbiter mission. The science nominal mission orbit will take the spacecraft from 0.28 to 0.95 astronomical units from the Sun, setting challenging and variable thermal conditions to its payload. METIS is an inverted-occultation coronagraph that will image the solar corona in the visible and UV wavelength range. In the visible light path a Polarization Modulation Package (PMP) performs a polarimetric analysis of the incoming solar light. This PMP is based on liquid crystal variable retarders (LCVR) and works under a temporal modulation scheme. The LCVRs behavior has a dependence on temperature and, as a consequence, it is critical to guarantee the PMP performance in the mission thermal environment. Key system specifications are the optical quality and the optical retardance homogeneity. Moreover, the thermally induced elastic deformations of the mechanical mounts and the LCVRs shall not produce any performance degradation. A suitable thermal control is hence required to maintain the system within its allowed limits at any time. The PMP shall also be able to reach specific set-points with the power budget allocated. Consequently, and in order to verify the PMP thermal design, we have experimentally reproduced the expected thermal flight environment. Specifically, a thermal-vacuum cycle test campaign is run at the different mission operational conditions. The purpose is both to check the stability of the thermal conditions and to study the optical quality evolution/degradation. Within this test transmitted wavefront measurements and functional verification tests have been carried out. To do that we adapted an optical interrogation scheme, based on a phase shifting interferometric technique, that allows for inspection of the PMP optical aperture. Finally, measurements obtained at non-operational temperature conditions are also shown. These results demonstrate that the device meets the specifications required to perform its operational role in the space mission environment.Ítem Acceso Abierto Mars environmental networks through the MarsConnect microprobes(Europlanet, 2025-01-23) Arruego, Ignacio; Apéstigue, Víctor; Bastide, L.; Azcue, J.; Gonzalo Melchor, Alejandro; Martínez Oter, J.; Caballero, N.; Liaño, G.; Torres, J.; González Guerrero, M.; Serrano, F.; De Mingo, J. R.; Rivas, J.; Andrés Santiuste, N.; Carrasco, I.; Fernández, M.; Reina, M.; Ruiz Carrasco, J. R.; Poyatos Martínez, David; Scaccabarozzi, D.; Frövel, M.; De la Torre, M. A.; Martín, S.; Pedraza, R.In the last 15 years the Payloads Department of INTA has developed a variety of compact sensors for different Mars exploration missions. This includes a magnetometer (72 g), a dust sensor (35 g; with UC3M, Spain) and a radiometer (114 g) for the MetNet penetrator [1]; a radiometer (25 g optical head, 56 g processor) for DREAMS (Schiaparelli) [2], [3]; a radiometer plus camera (1 kg) for MEDA on Perseverance [4], [5]; a 110 g dust sensor (with UC3M, Spain) [6] and a radiometer plus spectrometer (180 g) for the METEO package [7] on Kazachock lander (ExoMars’22) and a 0.5 kg nephelometer (with INAF and Politecnico di Milano, Italy) [8] for the Dust Complex on the same lander. Equally miniaturized sensors exist for the measurement of the most relevant environmental variables, such as radiative balance, air temperature, wind, humidity, pressure, dust saltation, electric field, etc. with enough flight heritage (or technology readiness level) on the same sensors’ suites on Perseverance and ExoMars, as well as Insight or Curiosity before [9]. In summary, a large portfolio of miniature sensors for environmental research is available at present. However, a qualitative leap on (in-situ) Mars climate science will only happen through the deployment of networks of environmental stations throughout large areas of the planet. Given the relevance of these measurement not only from a scientific point of view but also because of their importance for future human missions to Mars, this is an objective considered in several Mars exploration roadmaps such as ESA’s Terrae Novae 2030+ [10]. With this aim, we propose a microprobe named MarsConnect. It consists of a 10-12 kg probe with a rigid, deployable aeroshell/TPS and a 5-6 kg impactor/penetrator carrying up to 1 kg of environmental sensors. Many of these probes could be launched to Mars with a single carrier, to deploy meteorological networks. This works inherits different concepts from previous similar proposals, very specially MetNet and MiniPINS [11], but simplifying even more the EDL concept and reducing the mass, at the expense of an increased impact speed. The probe’s aeroshell is divided into a backshell and two halves of a frontshield that are opened in the low supersonic regime to drop the penetrator. This one is equipped with a drag-skirt that provides some braking and increases stability. The expected impact speed, highly dependent on the atmospheric density profile, entry conditions and landing altitude, ranges from less than 100 to 140 m/s. The whole system is designed to be compatible with a wide range of scenarios and landing sites and is sized to endure more than one Martian year operating on the planet’s surface.Publicación Acceso Abierto Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover(Multidisciplinary Digital Publishing Institute (MDPI), 2022-04-10) Apéstigue, Víctor; Gonzalo Melchor, Alejandro; Jiménez Martín, Juan José; Boland, J.; Lemmon, M. T.; de Mingo Martín, José Ramón; García-Menéndez, Elisa; Rivas, J.; Azcue, J.; Bastide, L.; Andrés Santiuste, N.; Martínez Oter, J.; González Guerrero, M.; Martín-Ortega, Alberto; Toledo, D.; Álvarez Ríos, F. J.; Serrano, F.; Martín Vodopivec, B.; Manzano, Javier; López Heredero, Raquel; Carrasco, I.; Aparicio, S.; Carretero, Á.; MacDonald, D. R.; Moore, L. B.; Alcacera Gil, María Ángeles; Fernández Viguri, J. A.; Martín, I.; Yela González, Margarita; Álvarez, Maite; Manzano, Paula; Martín, J. A.; del Hoyo Gordillo, Juan Carlos; Reina, M.; Urquí, R.; Rodríguez Manfredi, J. A.; De la Torre Juárez, M.; Hernández, Christina; Córdoba, Elizabeth; Leiter, R.; Thompson, Art; Madsen, Soren N.; Smith, Michael D.; Viúdez Moreiras, Daniel; Saiz López, A.; Sánchez Lavega, Agustín; Gómez Martín, L.; Martínez, Germán M.; Gómez Elvira, J.; Arruego, Ignacio; Instituto Nacional de Técnica Aeroespacial (INTA); Comunidad de Madrid; Gobierno Vasco; Ministerio de Economía y Competitividad (MINECO); Agencia Estatal de Investigación (AEI); National Aeronautics and Space Administration (NASA)The Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars’ surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars’ surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.Publicación Acceso Abierto The Polarimetric and Helioseismic Imager on Solar Orbiter(EDP Sciences, 2020-10) Solanki, S. K.; Álvarez-Herrrero, Alberto; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero Vidriales, Maria; Dávila, B.; Fernández Medina, A.; García Parejo, Pilar; Garranzo García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Nuñez Peral, A.; Royo, M.; Sánchez, A.; Silva López, M.; Vera Trallero, Isabel; Villanueva, J.; Zouganelis, I.; Deutsches Zentrum für Luft- und Raumfahrt (DLR); Centre National D'Etudes Spatiales (CNES); Centros de Excelencia Severo Ochoa, INSTITUTO DE ASTROFISICA DE ANDALUCIA (IAA), SEV-2017-0709This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science. Methods. SO/PHI measures the Zeeman effect and the Doppler shift in the Fe※ I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line. Results. SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit.










